TY - RPRT A1 - Putzer, Michael A1 - Rasmussen, John A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert A1 - Dendorfer, Sebastian ED - Baier, Wolfgang T1 - Muskuloskelettale Simulation zur Untersuchung des Einflusses geometrischer Parameter der Wirbelkörper auf die Belastung der Lendenwirbelsäule T2 - Forschungsbericht 2013 / Ostbayerische Technische Hochschule Regensburg Y1 - 2013 UR - https://doi.org/10.35096/othr/pub-799 SP - 60 EP - 61 CY - Regensburg ER - TY - CHAP A1 - Muehling, M. A1 - Englert, Carsten A1 - Dendorfer, Sebastian T1 - Influence of biceps tenotomy and tenodesis on post-operative shoulder strength T2 - Jahrestagung der Deutschen Gesellschaft für Biomechanik, March 2017, Hannover, Germany Y1 - 2017 ER - TY - JOUR A1 - Lenich, Andreas A1 - Bachmeier, S. A1 - Dendorfer, Sebastian A1 - Mayr, E. A1 - Nerlich, Michael A1 - Füchtmeier, Bernd T1 - Development of a test system to analyze different hip fracture osteosyntheses under simulated walking JF - Biomedizinische Technik. Biomedical engineering N2 - The mechanical complications of osteosyntheses after hip fractures are previously investigated by mostly static or dynamic uniaxial loading test systems. However, the physiologic loading of the hip joint during a normal gait is a multiplanar, dynamic movement. Therefore, we constructed a system to test osteosyntheses for hip fractures under physiologic multiplanar loading representative of normal gait. To evaluate the testing system, 12 femora pairs were tested under 25,000 cycles with two standard osteosyntheses (Proximal Femoral Nail Antirotation/Gamma3 Nail). For angular movement, the varus collapse to cut out (∝CO) (∝CO=4.8°±2.1° for blade and ∝CO=7.8°±3.8° for screw) was the dominant failure mode, and only slight rotational angle shifts (∝Rot) (∝Rot=1.7°±0.4° for blade and ∝Rot=2.4°±0.3° for screw) of the femoral head around the implant axis were observed. Angular displacements in varus direction and rotation were higher in specimens reinforced with screws. Hence, the cut out model and the migration directions showed a distinction between helical blade and hip screw. However, there were no significant differences between the different implants. The new setup is able to create clinical failures and allows to give evidence about the anchorage stability of different implant types under dynamic gait motion pattern. KW - biomechanical implant test KW - dynamic multiplanar loading KW - hip fractureg KW - implant migration KW - patient specific loading KW - Hüftgelenk KW - Knochenbruch KW - Osteosynthese KW - Bewegungsanalyse KW - Simulation Y1 - 2012 U6 - https://doi.org/10.1515/bmt-2011-0999 VL - 57 IS - 2 SP - 113 EP - 119 ER - TY - JOUR A1 - Prantl, Lukas A1 - Eigenberger, Andreas A1 - Gehmert, Sebastian A1 - Haerteis, Silke A1 - Aung, Thiha A1 - Rachel, Reinhard A1 - Jung, Ernst Michael A1 - Felthaus, Oliver T1 - Enhanced Resorption of Liposomal Packed Vitamin C Monitored by Ultrasound JF - Journal of Clinical Medicine N2 - Vitamin C is an essential nutrient for humans and is involved in a plethora of health-related functions. Several studies have shown a connection between vitamin C intake and an improved resistance to infections that involves the immune system. However, the body cannot store vitamin C and both the elevated oral intake, and the intravenous application have certain disadvantages. In this study, we wanted to show a new formulation for the liposomal packaging of vitamin C. Using freeze etching electron microscopy, we show the formed liposomes. With a novel approach of post-processing procedures of real-time sonography that combines enhancement effects by contrast-like ultrasound with a transducer, we wanted to demonstrate the elevated intestinal vitamin C resorption on four participants. With the method presented in this study, it is possible to make use of the liposomal packaging of vitamin C with simple household materials and equipment for intake elevation. For the first time, we show the enhanced resorption of ingested liposomes using microbubble enhanced ultrasound imaging. KW - ASCORBIC-ACID KW - CEUS KW - CONTRAST AGENT KW - CULTURES KW - DEFICIENCY KW - enhanced resorption KW - GULO KW - immune system KW - liposomal packing KW - MITOCHONDRIAL DYSFUNCTION KW - OXIDATIVE STRESS KW - PHOSPHATIDYLCHOLINE KW - sonography KW - vitamin C Y1 - 2020 U6 - https://doi.org/10.3390/jcm9061616 VL - 9 IS - 6 SP - 1 EP - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Weber, Tim A. A1 - Dendorfer, Sebastian A1 - Grifka, Joachim A1 - Verkerke, Gijsbertus Jacob A1 - Renkawitz, Tobias ED - Takagi, Michiaki T1 - Does Computer-Assisted Femur First THR Improve Musculoskeletal Loading Conditions? JF - BioMed Research International N2 - We have developed a novel, computer-assisted operation method for minimal-invasive total hip replacement (THR) following the concept of “femur first/combined anteversion,” which incorporates various aspects of performing a functional optimization of the prosthetic stem and cup position (CAS FF). The purpose of this study is to assess whether the hip joint reaction forces and patient’s gait parameters are being improved by CAS FF in relation to conventional THR (CON). We enrolled 60 patients (28 CAS FF/32 CON) and invited them for gait analysis at three time points (preoperatively, postop six months, and postop 12 months). Data retrieved from gait analysis was processed using patient-specific musculoskeletal models. The target parameters were hip reaction force magnitude (hrf), symmetries, and orientation with respect to the cup. Hrf in the CAS FF group were closer to a young healthy normal. Phase-shift symmetry showed an increase in the CAS FF group. Hrf orientation in the CAS FF group was closer to optimum, though no edge or rim-loading occurred in the CON group as well. The CAS FF group showed an improved hrf orientation in an early stage and a trend to an improved long-term outcome. KW - Hüftgelenkprothese KW - Operationstechnik KW - Computerunterstütztes Verfahren KW - Bewegungsapparat KW - Mechanische Belastung Y1 - 2015 U6 - https://doi.org/10.1155/2015/625317 VL - 2015 SP - ID 625317 ER - TY - JOUR A1 - Pfeifer, Christian A1 - Müller, Michael A1 - Prantl, Lukas A1 - Berner, Arne A1 - Dendorfer, Sebastian A1 - Englert, Carsten T1 - Cartilage labelling for mechanical testing in T-peel configuration JF - International Orthopaedics N2 - PURPOSE: The purpose of this study was to find a suitable method of labelling cartilage samples for the measurement of distraction distances in biomechanical testing. METHODS: Samples of bovine cartilage were labelled using five different methods: hydroquinone and silver nitrate (AgNO3), potassium permanganate (KMnO4) with sodium thiosulphate (Na2S2O3), India ink, heat, and laser energy. After the labelling, we analysed the cartilage samples with regard to cytotoxity by histochemical staining with ethidiumbromide homodimer (EthD-1) and calcein AM. Furthermore, we tested cartilages labelled with India ink and heat in a T-peel test configuration to analyse possible changes in the mechanical behaviour between marked and unlabelled samples. RESULTS: Only the labelling methods with Indian ink or a heated needle showed acceptable results in the cytotoxity test with regard to labelling persistence, accuracy, and the influence on consistency and viability of the chondrocytes. In the biomechanical T-peel configuration, heat-labelled samples collapsed significantly earlier than unlabelled samples. CONCLUSION: Labelling bovine cartilage samples with Indian ink in biomechanical testing is a reliable, accurate, inexpensive, and easy-to-perform method. This labelling method influenced neither the biomechanical behaviour nor the viability of the tissue compared to untreated bovine cartilage. KW - Bovine cartilage KW - Cartilage samples KW - Indian ink KW - T-peel configuration KW - Method labeling KW - Knorpel KW - Rind KW - Kennzeichnung KW - Tinte KW - Biomechanik KW - Prüfung Y1 - 2012 U6 - https://doi.org/10.1007/s00264-011-1468-3 VL - 36 IS - 7 SP - 1493 EP - 1499 PB - Springer ER - TY - JOUR A1 - Wong, Christian A1 - Rasmussen, John A1 - Simonsen, Erik B. A1 - Hansen, Lone A1 - de Zee, Mark A1 - Dendorfer, Sebastian T1 - The Influence of Muscle Forces on the Stress Distribution in the Lumbar Spine JF - The Open Spine Journal N2 - Introduction: Previous studies of bone stresses in the human lumbar spine have relied on simplified models when modeling the spinal musculature, even though muscle forces are likely major contributors to the stresses in the vertebral bones. Detailed musculoskeletal spine models have recently become available and show good correlation with experimental findings. A combined inverse dynamics and finite element analysis study was conducted in the lumbar spine to investigate the effects of muscle forces on a detailed musculoskeletal finite element model of the 4th lumbar vertebral body. Materials and Methodology: The muscle forces were computed with a detailed and validated inverse dynamics musculoskeletal spine model in a lifting situation, and were then applied to an orthotropic finite element model of the 4th lumbar vertebra. The results were compared with those from a simplified load case without muscles. Results: In general the von Mises stress was larger by 30%, and even higher when looking at the von Mises stress distribution in the superio-anterior and central part of the vertebral body and in the pedicles. Conclusion: The application of spine muscles to a finite element model showed markedly larger von Mises stress responses in the central and anterior part of the vertebral body, which can be tolerated in the young and healthy spine, but it would increase the risk of compression fractures in the elderly, osteoporotic spine. KW - Lumbar spine KW - Muscle influence KW - Inverse dynamics KW - Finite element analysis KW - Lendenwirbelsäule KW - Muskelkraft KW - Belastung KW - Finite-Elemente-Methode Y1 - 2011 U6 - https://doi.org/10.2174/1876532701103010021 VL - 3 IS - 1 SP - 21 EP - 26 ER - TY - JOUR A1 - Roldán, J.C. A1 - Moralis, A. A1 - Dendorfer, Sebastian A1 - Witte, J. A1 - Reicheneder, C. T1 - Controlled central advancement of the midface after Le Fort III osteotomy by a 3-point skeletal anchorage JF - The Journal of craniofacial surgery N2 - A 3-point skeletal anchorage with taping screws for distraction osteogenesis after a Le Fort III osteotomy was applied for the first time in a severely mentally impaired patient where intraoral devices had to be avoided. All 3-force application points included the center of resistance, which allowed an optimal control on the resulting moment. A novel device for skeletal long-term retention into the nasal dorsum prevented a relapse, whereas adjustment of the midface position was observed. Fusioned three-dimensional computed tomography analysis revealed real movements not accessible by a conventional cephalometry. KW - Mund-Kiefer-Gesichts-Chirurgie KW - Le Fort III KW - distraction KW - vector KW - anchorage KW - three-dimensional computed tomography analysis KW - Distraktion KW - Knochenbildung KW - Osteotomie KW - Dreidimensionale Bildverarbeitung KW - Computertomografie Y1 - 2011 U6 - https://doi.org/10.1097/SCS.0b013e318231fc8d VL - 22 IS - 6 SP - 2384 EP - 2386 ER - TY - CHAP A1 - Dendorfer, Sebastian A1 - Maier, Hans Jürgen A1 - Hammer, Josef T1 - How do age and anisotropy affect the fatigue behaviour of cancellous bone? T2 - Medicine Meets Engineering N2 - The fatigue behaviour of materials is of particular interest for the failure prediction of materials and structures exposed to cyclic loading. For trabecular bone structures only a few sets of lifetime data have been reported in the literature and structural measures are commonly not considered. The influence of load contributions not aligned with the main physiological axis remains unclear. Furthermore age effects on the fatigue behaviour are not well described. In the present study, different groups of human vertebral cancellous bone were exposed to cyclic compression. The inital modulus and therefore lifetimes were found to be highly dependent on age. The decrease in both with increasing age was much more pronounced in specimens which were not aligned with the main physiological axis. This implies that old bone is much more sensitive to (cyclic) failure loads in general but particularly to loads which are not coincident with the physiological main axis. KW - Knochenbruch KW - Spongiosa KW - Alter KW - Anisotropie Y1 - 2008 SP - 68 EP - 74 PB - IOS Press ER - TY - JOUR A1 - Prantl, Lukas A1 - Eigenberger, Andreas A1 - Klein, Silvan A1 - Limm, Katharina A1 - Oefner, Peter J. A1 - Schratzenstaller, Thomas A1 - Felthaus, Oliver T1 - Shear Force Processing of Lipoaspirates for Stem Cell Enrichment Does Not Affect Secretome of Human Cells Detected by Mass Spectrometry In Vitro JF - Plastic and Reconstructive Surgery N2 - Background: Lipofilling is one of the most often performed surgical procedures in plastic and reconstructive surgery. Lipoaspirates provide a ready source of stem cells and secreted factors that contribute to neoangiogenesis and fat graft survival. However, the regulations about the enrichment of these beneficial cells and factors are ambiguous. In this study, the authors tested whether a combination of centrifugation and homogenization allowed the enrichment of viable stem cells in lipoaspirates through the selective removal of tumescent solution, blood, and released lipids without significantly affecting the cell secretome. Methods: Human lipoaspirate was harvested from six different patients using water jet–assisted liposuction. Lipoaspirate was homogenized by first centrifugation (3584 rpm for 2 minutes), shear strain (10 times intersyringe processing), and second centrifugation (3584 rpm for 2 minutes). Stem cell enrichment was shown by cell counting after stem cell isolation. Lipoaspirate from different processing steps (unprocessed, after first centrifugation, after homogenization, after second centrifugation) was incubated in serum-free cell culture medium for mass spectrometric analysis of secreted proteins. Results: Lipoaspirate homogenization leads to a significant 2.6 ± 1.75-fold enrichment attributable to volume reduction without reducing the viability of the stem cells. Protein composition of the secretome did not change significantly after tissue homogenization. Considering the enrichment effects, there were no significant differences in the protein concentration of the 83 proteins found in all processing steps. Conclusions: Stem cells can be enriched mechanically without significantly affecting the composition of secreted proteins. Shear-assisted enrichment of lipoaspirate constitutes no substantial manipulation of the cells’ secretome. Y1 - 2020 U6 - https://doi.org/10.1097/PRS.0000000000007343 VL - 146 IS - 6 SP - 749e EP - 758e PB - American Society of Plastic Surgeons ER - TY - JOUR A1 - Eigenberger, Andreas A1 - Felthaus, Oliver A1 - Schratzenstaller, Thomas A1 - Haerteis, Silke A1 - Utpatel, Kirsten A1 - Prantl, Lukas T1 - The Effects of Shear Force-Based Processing of Lipoaspirates on White Adipose Tissue and the Differentiation Potential of Adipose Derived Stem Cells JF - cells N2 - Autologous lipotransfer is a promising method for tissue regeneration, because white adipose tissue contains a heterogeneous cell population, including mesenchymal stem cells, endothelial cells, immune cells, and adipocytes. In order to improve the outcome, adipose tissue can be processed before application. In this study, we investigated changes caused by mechanical processing. Lipoaspirates were processed using sedimentation, first-time centrifugation, shear-force homogenization, and second-time centrifugation. The average adipocyte size, stromal vascular cell count, and adipocyte depot size were examined histologically at every processing step. In addition, the adipose derived stem cells (ADSCs) were isolated and differentiated osteogenically and adipogenically. While homogenization causes a disruption of adipocyte depots, the shape of the remaining adipocytes is not changed. On average, these adipocytes are smaller than the depot adipocytes, they are surrounded by the ECM, and therefore mechanically more stable. The volume loss of adipocyte depots leads to a significant enrichment of stromal vascular cells such as ADSCs. However, the mechanical processing does not change the potential of the ADSCs to differentiate adipogenically or steogenically. It thus appears that mechanically processed lipoaspirates are promising for the reparation of even mechanically stressed tissue as that found in nasolabial folds. The changes resulting from the processing correspond more to a filtration of mechanically less stable components than to a manipulation of the tissue. KW - white adipose tissue KW - lipograft KW - stem cells KW - fat grafting KW - surgery KW - cell-enriched lipotransfer KW - CELT KW - lipoaspirate Y1 - 2022 U6 - https://doi.org/10.3390/cells11162543 VL - 11 IS - 16 PB - MDPI CY - Basel ER - TY - GEN A1 - Auer, Simon A1 - Reinker, Lukas A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Comparing calculated and measured muscle activity of thigh muscles in dynamic motion. T2 - 27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal Y1 - 2022 UR - https://drive.google.com/uc?id=1RBguxyHZE-Wr2y6ktOWK06_3lQg2M9Rb&export=download&confirm=t SP - 640 ER - TY - JOUR A1 - Reinker, Lukas A1 - Bläsing, Dominic A1 - Bierl, Rudolf A1 - Ulbricht, Sabina A1 - Dendorfer, Sebastian T1 - Correlation of Acceleration Curves in Gravitational Direction for Different Body Segments during High-Impact Jumping Exercises JF - sensors N2 - Osteoporosis is a common disease of old age. However, in many cases, it can be very well prevented and counteracted with physical activity, especially high-impact exercises. Wearables have the potential to provide data that can help with continuous monitoring of patients during therapy phases or preventive exercise programs in everyday life. This study aimed to determine the accuracy and reliability of measured acceleration data at different body positions compared to accelerations at the pelvis during different jumping exercises. Accelerations at the hips have been investigated in previous studies with regard to osteoporosis prevention. Data were collected using an IMU-based motion capture system (Xsens) consisting of 17 sensors. Forty-nine subjects were included in this study. The analysis shows the correlation between impacts and the corresponding drop height, which are dependent on the respective exercise. Very high correlations (0.83–0.94) were found between accelerations at the pelvis and the other measured segments at the upper body. The foot sensors provided very weak correlations (0.20–0.27). Accelerations measured at the pelvis during jumping exercises can be tracked very well on the upper body and upper extremities, including locations where smart devices are typically worn, which gives possibilities for remote and continuous monitoring of programs. KW - osteoporosis KW - inertial measurement units KW - wearable motion-tracking sensors KW - high-impact exercisess Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-58217 N1 - Corresponding author: Lukas Reinker N1 - This work was supported by the Bavarian Academic Forum [BayWISS-Verbundkolleg Gesundheit] and the DHZK fond for behavioral cardiovascular diseases [Behaviorale kardiovaskuläre Erkrankungen; grand number: 81Z0400105]. VL - 23 IS - 4 PB - MDPI CY - Basel ER - TY - JOUR A1 - Köck, Hannah A1 - Striegl, Birgit A1 - Kraus, Annalena A1 - Zborilova, Magdalena A1 - Christiansen, Silke H. A1 - Schäfer, Nicole A1 - Grässel, Susanne A1 - Hornberger, Helga T1 - In Vitro Analysis of Human Cartilage Infiltrated by Hydrogels and Hydrogel-Encapsulated Chondrocytes JF - Bioengineering N2 - Osteoarthritis (OA) is a degenerative joint disease causing loss of articular cartilage and structural damage in all joint tissues. Given the limited regenerative capacity of articular cartilage, methods to support the native structural properties of articular cartilage are highly anticipated. The aim of this study was to infiltrate zwitterionic monomer solutions into human OA-cartilage explants to replace lost proteoglycans. The study included polymerization and deposition of methacryloyloxyethyl-phosphorylcholine- and a novel sulfobetaine-methacrylate-based monomer solution within ex vivo human OA-cartilage explants and the encapsulation of isolated chondrocytes within hydrogels and the corresponding effects on chondrocyte viability. The results demonstrated that zwitterionic cartilage–hydrogel networks are formed by infiltration. In general, cytotoxic effects of the monomer solutions were observed, as was a time-dependent infiltration behavior into the tissue accompanied by increasing cell death and penetration depth. The successful deposition of zwitterionic hydrogels within OA cartilage identifies the infiltration method as a potential future therapeutic option for the repair/replacement of OA-cartilage extracellular suprastructure. Due to the toxic effects of the monomer solutions, the focus should be on sealing the OA-cartilage surface, instead of complete infiltration. An alternative treatment option for focal cartilage defects could be the usage of monomer solutions, especially the novel generated sulfobetaine-methacrylate-based monomer solution, as bionic for cell-based 3D bioprintable hydrogels. KW - osteoarthritis KW - human articular cartilage KW - chondrocytes KW - hydrogels KW - zwitterionic monomers KW - infiltration Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-61235 N1 - Corresponding author: Helga Hornberger VL - 10 SP - 1 EP - 21 PB - MDPI ER - TY - JOUR A1 - Lichtenauer, Norbert A1 - Ettl, Katrin A1 - Mohr, Christa A1 - Weber, Karsten A1 - Meussling-Sentpali, Annette T1 - Der Pflegeroboter für zu Hause JF - Die Schwester, der Pfleger N2 - Ein interdisziplinäres Forschungsprojekt der Ostbayerischen Hochschule Regensburg untersucht, inwiefern Telemedizin und digitale Anwendungen die Therapie und Pflege von Menschen mit Schlaganfall in ihrem häuslichen Umfeld unterstützen, ihre Lebensqualität beeinflussen und die intersektorale Versorgung verbessern kann. Y1 - 2021 UR - https://www.bibliomed-pflege.de/sp/artikel/44176-der-pflegeroboter-fuer-zu-hause VL - 11 IS - 21 SP - 48 EP - 52 PB - Bibliomed-Medizinische Verlagsgesellschaft mbH ER - TY - CHAP A1 - Schaeffer, Leon A1 - Herrmann, David A1 - Böhm, Valter T1 - Concept of a wrist Hand Orthosis based on a prestressed compliant structure T2 - Proceedings of the 7th International Conference on Biomedical Engineering and Applications (ICBEA), Hangzhou, China, 21-23 April 2023 N2 - In the treatment of hand injuries in the context of orthopedic care, movable wrist hand orthoses are used in numerous instances. Early motion therapy is in most cases advantageous for adequate, rapid and successful long-term healing of the hand. Conventional dynamic wrist hand orthoses can only be used for movement therapy to a limited extent since they represent the wrist as a simple rotating joint and neglect the complexity of the hand movement possibilities. In this paper, a preliminary concept for dynamic wrist hand orthoses based on prestressed compliant structures is presented. The distinctive feature of this concept lies in the enabling of multiaxial motion capabilities of the human hand without applying conventional joints. According to the concept the wrist region is surrounded by a prestressed compliant structure. Besides the derivation and description of the concept, a first three-dimensional computer-aided design is shown. Additionally, the necessary steps in the development of such a novel dynamic wrist orthosis are discussed. Y1 - 2023 U6 - https://doi.org/10.1109/ICBEA58866.2023.00024 SP - 98 EP - 103 PB - IEEE ER - TY - CHAP A1 - Schaeffer, Leon A1 - Herrmann, David A1 - Böhm, Valter T1 - Preliminary theoretical considerations of a hand orthosis based on a prestressed, compliant structure T2 - Proceedings of the 2023 International Symposium on Medical Robotics (ISMR), Atlanta, 19-21 April 2023 N2 - In the treatment of hand injuries in the context of orthopedic care, movable hand orthoses are used in many cases. Early motion therapy is in most cases advantageous for adequate, rapid, and successful long-term healing of the hand. Conventional mobile hand orthoses can only be used for movement therapy to a limited extent since they represent the wrist as a simple rotating joint and neglect the complexity of the movement possibilities of the hand. In this paper, a novel concept for movable hand orthoses based on prestressed compliant structures is presented. The advantage with this concept is that it replicates the multiaxial motion capabilities without the need for conventional joints. Besides the derivation and description of the concept, a first three-dimensional CAD design is shown. Additionally, the next planned steps in the development of such a novel dynamic hand orthosis are described. Y1 - 2023 U6 - https://doi.org/10.1109/ISMR57123.2023.10130230 SP - 1 EP - 7 PB - IEEE ER - TY - JOUR A1 - Morag, Sarah A1 - Kieninger, Martin A1 - Eissnert, Christoph A1 - Auer, Simon A1 - Dendorfer, Sebastian A1 - Popp, Daniel A1 - Hoffmann, Johannes A1 - Kieninger, Bärbel T1 - Comparison of different techniques for prehospital cervical spine immobilization: Biomechanical measurements with a wireless motion capture system JF - PLOS ONE Y1 - 2023 U6 - https://doi.org/10.1371/journal.pone.0292300 VL - 18 IS - 11 SP - 1 EP - 14 PB - PLOS CY - San Francisco, California ER - TY - GEN A1 - Dendorfer, Sebastian T1 - Patientenindividuelle biomechanisch optimierte Rehabilitation T2 - Primär- und Revisionsendoprothetik des Kniegelenks. Trends und zukünftige Herausforderungen. Regensburg 2023 Y1 - 2023 ER - TY - JOUR A1 - Reinker, Lukas A1 - Dendorfer, Sebastian T1 - Evaluation of acceleration patterns during high-impact jumping exercises JF - Gait & Posture Y1 - 2023 U6 - https://doi.org/10.1016/j.gaitpost.2022.11.051 VL - 100 IS - Supplement 1, March SP - 93 EP - 94 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Obermaier, Lisa A1 - Lehle, Karla A1 - Schmid, Stefanie A1 - Schmid, Christof A1 - Schratzenstaller, Thomas T1 - Introduction of a new ex vivo porcine coronary artery model: Evaluation of the direct vascular injury after stent implantation with and without dogbone effect JF - European Surgical Research N2 - Introduction: Neointimal hyperplasia after percutaneous coronary intervention remains a major determinant of in-stent restenosis (ISR). The extent of mechanical vessel injury correlates with ISR. A new ex vivo porcine stent model was introduced and evaluated comparing different stent designs. Methods: Coronary arteries were prepared from pig hearts from the slaughterhouse and used for ex vivo implantations of coronary stents. One basic stent design in two configurations (dogbone, DB; non-dogbone, NDB) was used. Vascular injury was determined according to a modified injury score (IS). Results: Standardized experimental conditions ensured comparable vessel dimensions and overstretch data. DB stents caused more severe IS compared to NDB stents. The mean IS and the IS at the distal end of all stents were significantly reduced for NDB stents (ISMean, DB, 1.16 ±0.12; NDB, 1.02 ±0.12; p=0.018; ISDist, DB, 1.39 ±0.28; NDB, 1.13 ±0.24; p=0.03). Discussion/Conclusion: The introduced ex-vivo model allowed the evaluation of different stent designs exclude unfavorable stent designs. KW - Stent screening KW - Stent design KW - Injury score KW - Ex vivo porcine stent model Y1 - 2022 U6 - https://doi.org/10.1159/000527883 SN - 1421-9921 VL - 63 IS - 4 SP - 285 EP - 293 PB - Karger CY - Basel ER - TY - JOUR A1 - Melzner, Maximilian A1 - Ismail, Khaled A1 - Rušavy, Zdenek A1 - Kališ, Vladimír A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Musculoskeletal lower back load of accoucheurs during childbirth – A pilot and feasibility study JF - European Journal of Obstetrics & Gynecology and Reproductive Biology N2 - Introduction: Back problems represent one of the leading causes of accouchers' work-related musculoskeletal morbidities. The correct execution of birth-related maneuvers including manual perineal protection is crucial not only for the mother and child but also for obstetricians and midwives to reduce any strain on their musculoskeletal system. Therefore, the overall aim of this study was to test the feasibility of determining the effect of different accouchers' postures (standing and kneeling) on their musculoskeletal system. Methods: The biomechanical analysis is based on musculoskeletal simulations that included motion recordings of real deliveries as well as deliveries conducted on a birthing simulator. These simulations were then used to determine individual joints' loads. Results: In the kneeling posture, both a low intra-operator variability and a lower average maximum load of the lower back was observed. For the standing position the spine load was reduced by pivoting the elbow on the accouchers' thigh, which in turn was associated with a significantly greater load on the shoulder joint. Conclusion: The study demonstrated the feasibility of our technique to assess joints loads. It also provided initial data indicating that a posture that reduces spinal flexion and tilt, achieved in this study by the kneeling, can significantly reduce the strain on the practitioner's musculoskeletal system. KW - lower back load KW - Accoucheur KW - Musculoskeletal simulation Y1 - 2021 U6 - https://doi.org/10.1016/j.ejogrb.2021.07.042 IS - 264 SP - 306 EP - 313 PB - Elsevier ER - TY - JOUR A1 - Lotter, Luisa A1 - Brebant, Vanessa A1 - Eigenberger, Andreas A1 - Hartmann, Robin A1 - Mueller, Karolina A1 - Baringer, Magnus A1 - Prantl, Lukas A1 - Schiltz, Daniel T1 - "Topographic Shift": a new digital approach to evaluating topographic changes of the female breast JF - Archives of Gynecology and Obstetrics N2 - Purpose To assess precise topographic changes of the breast, objective documentation and evaluation of pre- and postoperative results are crucial. New technologies for mapping the body using digital, three-dimensional surface measurements have offered novel ways to numerically assess the female breast. Due to the lack of clear demarcation points of the breast contour, the selection of landmarks on the breast is highly dependent on the examiner, and, therefore, is prone to error when conducting before-after comparisons of the same breast. This study describes an alternative to volumetric measurements, focusing on topographic changes of the female breast, based on three-dimensional scans. Method The study was designed as an interventional prospective study of 10 female volunteers who had planned on having aesthetic breast augmentation with anatomical, textured implants. Three dimensional scans of the breasts were performed intraoperatively, first without and then with breast implants. The topographic change was determined as the mean distance between two three-dimensional layers before and after augmentation. This mean distance is defined as the Topographic Shift. Results The mean implant volume was 283 cc (SD = 68.6 cc, range = 210-395 cc). The mean Topographic Shift was 7.4 mm (SD = 1.9 mm, range = 4.8-10.7 mm). The mean Topographic Shifts per quadrant were: I: 8.0 mm (SD = 3.3 mm); II: 9.2 mm (SD = 3.1 mm); III: 6.9 mm (SD = 3.5 mm); IV: 1.9 mm (SD = 4.3 mm). Conclusion The Topographic Shift, describing the mean distance between two three-dimensional layers (for example before and after a volume changing therapy), is a new approach that can be used for assessing topographic changes of a body area. It was found that anatomical, textured breast implants cause a topographic change, particularly on the upper breast, in quadrant II, the decollete. KW - 3D measurement KW - 3D scan KW - 3D volumetry KW - AUGMENTATION KW - Breast augmentation KW - Breast implant KW - MAMMAPLASTY KW - SHAPE KW - Topographic shift Y1 - 2021 U6 - https://doi.org/10.1007/s00404-020-05837-3 VL - 303 IS - 2 SP - 515 EP - 520 PB - Springer Nature ER - TY - GEN A1 - Saffert, Anne-Sophia A1 - Melzner, Maximilian A1 - Dendorfer, Sebastian T1 - Biomechanical Analysis of the Right Elevated Glenohumeral Joint in Violinists during Legato-Playing T2 - Biomdlore 2021: 21-23 October 2021 Vilnius/Trakai, Lithuania N2 - BACKGROUND: Many statistics reveal that violin players suffer most often from musculoskeletal disorders compared to musicians of other instrument groups. A common phenomenon, especially observed in violin beginners, is the tendency to elevate the right shoulder during playing the violin. This can probably lead to serious disorders in long-term practice with repetitive movements. OBJECTIVE: For this reason, this study investigated the relationship between the right shoulder elevation and the force in the right glenohumeral joint during violin playing. It was hypothesized that the forces in the right glenohumeral joint are higher during playing with the right shoulder raised compared to playing in normal posture. METHODS: Motion capture data from four experienced violinists was recorded and processed by means of musculoskeletal simulation to get the force and elevation angle while playing with raised shoulder and in normal position. RESULTS: The results indicate that the absolute values of the resulting force, as well as the forces in the mediolateral, inferosuperior, and anteroposterior directions, are higher in playing the violin with the shoulder raised than in a normal posture. CONCLUSIONS: Elevating the right shoulder while playing the violin may pose a potential problem. Y1 - 2021 U6 - https://doi.org/10.3233/THC-219001 N1 - Veröffentlicht in: Technology and Health Care, vol. 30, no. 1 (Selected Papers From the 13th International Conference BIOMDLORE 2021), pp. 177-186, 2022 ER - TY - JOUR A1 - Auer, Simon A1 - Schiebl, Jonas A1 - Iversen, Kristoffer A1 - Subhash Chander, Divyaksh A1 - Damsgaard, Michael A1 - Dendorfer, Sebastian T1 - Biomechanical assessment of the design and efficiency of occupational exoskeletons with the AnyBody Modeling System JF - Zeitschrift für Arbeitswissenschaften N2 - Exoskeletons were invented over 100 years ago but have only become popular in the last two decades, especially in the working industry as they can decrease work-related loads significantly. The most often used exoskeletons are for the lower back and shoulder since these are commonly affected body regions. All devices have in common that their purpose is to reduce internal loads of vulnerable body regions. Nevertheless, there is still little understanding on how biomechanical loading in the human body changes when exoskeletons are used. Therefore, further analyses are needed. A promising candidate for these are musculoskeletal models, which are based on an inverse dynamics approach and can calculate external parameters such as ground reaction forces or other interaction forces as well as internal parameters such as joint reaction forces or muscle activities. The various examples in the literature show that these models are increasingly used for assessing the biomechanical effects of exoskeletons on the human body. Furthermore, musculoskeletal models can calculate biomechanical loadings of humans with and without exoskeletons for all kinds of applications and allow an evaluation of their purpose. Practical Relevance: This article highlights the possibilities of musculoskeletal models for assessing the design and efficiency of occupational exoskeletons. Several practical use cases are described along with distinct descriptions of common implications of musculoskeletal and exoskeleton modeling. KW - Biomechanics KW - Ergonomics KW - Motion capture KW - Inverse dynamics Y1 - 2022 U6 - https://doi.org/10.1007/s41449-022-00336-4 N1 - Corresponding author: Sebastian Dendorfer VL - 76 IS - 4 SP - 440 EP - 449 PB - Springer Nature ER - TY - JOUR A1 - Weber, Markus A1 - Suess, Franz A1 - Jerabek, Seth A1 - Meyer, Matthias A1 - Grifka, Joachim A1 - Renkawitz, Tobias A1 - Dendorfer, Sebastian T1 - Kinematic pelvic tilt during gait alters functional cup position in total hip arthroplasty JF - Journal of Orthopaedic Research N2 - Static pelvic tilt impacts functional cup position in total hip arthroplasty (THA). In the current study we investigated the effect of kinematic pelvic changes on cup position. In the course of a prospective controlled trial postoperative 3D-computed tomography (CT) and gait analysis before and 6 and 12 months after THA were obtained in 60 patients. Kinematic pelvic motion during gait was measured using Anybody Modeling System. By fusion with 3D-CT, the impact of kinematic pelvic tilt alterations on cup anteversion and inclination was calculated. Furthermore, risk factors correlating with high pelvic mobility were evaluated. During gait a high pelvic range of motion up to 15.6° exceeding 5° in 61.7% (37/60) of patients before THA was found. After surgery, the pelvis tilted posteriorly by a mean of 4.0 ± 6.6° (p < .001). The pelvic anteflexion led to a mean decrease of −1.9 ± 2.2° (p < .001) for cup inclination and −15.1 ± 6.1° (p < .001) for anteversion in relation to the anterior pelvic plane (APP). Kinematic pelvic changes resulted in a further change up to 2.3° for inclination and up to 12.3° for anteversion. In relation to the preoperative situation differences in postoperative cup position ranged from −4.4 to 4.6° for inclination and from −7.8 to 17.9° for anteversion, respectively. Female sex (p < .001) and normal body weight (p < .001) correlated with high alterations in pelvic tilt. Kinematic pelvic changes highly impact cup anteversion in THA. Surgeons using the APP as reference should aim for a higher anteversion of about 15° due to the functional anteflexion of the pelvis during gait. KW - component position KW - gait analysis KW - kinematics KW - pelvic tilt KW - total hip arthroplasty KW - Hüftgelenkprothese KW - Haltungsfehler KW - Hüftgelenkpfanne Y1 - 2021 U6 - https://doi.org/10.1002/jor.25106 SN - 1554-527X VL - 40 IS - 4 SP - 846 EP - 853 PB - Wiley ER - TY - JOUR A1 - Melzner, Maximilian A1 - Suess, Franz A1 - Dendorfer, Sebastian T1 - The impact of anatomical uncertainties on the predictions of a musculoskeletal hand model – a sensitivity study JF - Computer Methods in Biomechanics and Biomedical Engineering N2 - Outputs of musculoskeletal models should be considered probabilistic rather than deterministic as they are affected by inaccuracies and estimations associated with the development of the model. One of these uncertainties being critical for modeling arises from the determination of the muscles' line of action and the physiological cross-sectional area. Therefore, the aim of this study was to evaluate the outcome sensitivity of model predictions from a musculoskeletal hand model in comparison to the uncertainty of these input parameters. For this purpose, the kinematics and muscle activities of different hand movements (abduction of the fingers, abduction of the thumb, and flexion of the thumb) were recorded. One thousand simulations were calculated for each movement using the Latin hypercube sampling method with a corresponding variation of the muscle origin/insertion points and the cross-sectional area. Comparing the standard hand to simulations incorporating uncertainties of input parameters shows no major deviations in on- and off-set time point of muscle activities. About 60% of simulations are located within a ± 30% interval around the standard model concerning joint reaction forces. The comparison with the variation of the input data leads to the conclusion that the standard hand model is able to provide not over-scattered outcomes and, therefore, can be considered relatively stable. These results are of practical importance to the personalization of a musculoskeletal model with subject-specific bone geometries and hence changed muscle line of action. KW - Biomechanik KW - Simulation Y1 - 2021 U6 - https://doi.org/10.1080/10255842.2021.1940974 SN - 1476-8259 N1 - Corresponding author: Maximilian Melzner VL - 25 IS - 2 SP - 156 EP - 164 PB - Taylor & Francis ER - TY - JOUR A1 - Auer, Simon A1 - Kubowitsch, Simone A1 - Dendorfer, Sebastian T1 - Kombinierter Einfluss von psychologischen und biomechanischen Faktoren auf die muskulären Belastungen beim Fußballspielen JF - Die Orthopädie N2 - When mental stress and musculoskeletal loading interact, the risk for injury increases due to altered body kinematics and increased muscle tension. These changes can be detected with musculoskeletal models, and mental loading and stress must be analyzed at emotional, cognitive, and behavioral levels. To investigate these kinematic and loading changes under stress, competitive athletes were subjected to mental stress during highly dynamic movements, and musculoskeletal models were used to analyze the biomechanical loading. It was shown that under mental stress, independent of the subjective perception, a strong change in muscle forces can occur. Accordingly, competitive athletes should undergo screenings to assess individual movement patterns and promote general stress resilience. N2 - Für Fußballer:innen stellen muskuläre Verletzungen der unteren Extremitäten ein großes Problem dar. Ein Beispiel hierfür liefert die Nationalmannschaftsstürmerin Alexandra Popp, die aufgrund muskulärer Probleme das EM-Finale 2022 in Wembley kurzfristig verpasste. Oftmals stehen gerade hohe Anspannungssituationen in zeitlichem Zusammenhang mit Verletzungen, der Einfluss der psychischen Beanspruchung auf die biomechanischen Belastungen wird jedoch meist nur wenig beachtet. KW - Biologische Modelle KW - Biomechanik KW - Leistungssportler KW - Bewegung KW - Resilienz, psychologische KW - Biological models KW - Biomechanics KW - Elite athletes KW - Movement KW - Resilience, psychological Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-65113 N1 - Corresponding author: Sebastian Dendorfer VL - 52 IS - 11 SP - 1 EP - 6 PB - Springer ER - TY - JOUR A1 - Melzner, Maximilian A1 - Pfeiffer, Christian A1 - Suess, Franz A1 - Dendorfer, Sebastian T1 - Musculoskeletal simulation of elbow stability for common injury patterns JF - Journal of Orthopaedic Research N2 - Elbow stability is derived from a combination of muscular, ligamentous, and bony structures. After an elbow trauma the stability of the joint is an important decision criterion for the subsequent treatment. The decision regarding non-operative/operative care depends mostly on subjective assessments of medical experts. Therefore, the aim of this study is to use musculoskeletal simulations as an objective assessment tool to investigate the extent to which failure of different stabilizers affects the elbow stability and how these observations correspond to the assessment from clinical practice. A musculoskeletal elbow simulation model was developed for this aim. To investigate the stability of the elbow, varus/valgus moments were applied under 0°, 45°and 90° flexion while the respective cubital angle was analyzed. This was performed for nine different injury scenarios, which were also evaluated for stability by clinical experts. With the results, it can be determined by which injury pattern and under which flexion angle the elbow stability is impaired regarding varus/valgus moments. The scenario with a complete failure of the medial and lateral ligaments and a fracture of the radial head was identified as having the greatest instability. The study presented a numerical determination of elbow stability against varus/valgus moments regarding clinical injury patterns, as well as a comparison of the numerical outcome with experience gained in clinical practice. The numerical predictions agree well with the assessments of the clinical specialists. Thus, the results from musculoskeletal simulation can make an important contribution to a more objective assessment of the elbow stability. KW - AnyBody KW - musculoskeletal simulation KW - elbow stability Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-54819 SN - 1554-527X N1 - Corresponding author: Maximilian Melzner VL - 41 IS - 6 SP - 1356 EP - 1364 PB - Wiley ER - TY - JOUR A1 - Melzner, Maximilian A1 - Engelhardt, Lucas A1 - Simon, Ulrich A1 - Dendorfer, Sebastian T1 - Electromyography-Based Validation of a Musculoskeletal Hand Model JF - Journal of Biomechanical Engineering N2 - Regarding the prevention of injuries and rehabilitation of the human hand, musculoskeletal simulations using an inverse dynamics approach allow for insights of the muscle recruitment and thus acting forces on the hand. Currently, several hand models from various research groups are in use, which are mainly validated by the comparison of numerical and anatomical moment arms. In contrast to this validation and model-building technique by cadaver studies, the aim of this study is to further validate a recently published hand model [1] by analyzing numerically calculated muscle activities in comparison to experimentally measured electromyographical signals of the muscles. Therefore, the electromyographical signals of 10 hand muscles of five test subjects performing seven different hand movements were measured. The kinematics of these tasks were used as input for the hand model, and the numerical muscle activities were computed. To analyze the relationship between simulated and measured activities, the time difference of the muscle on- and off-set points was calculated, which resulted in a mean on- and off-set time difference of 0.58 s between the experimental data and the model. The largest differences were detected for movements that mainly addressed the wrist. One major issue comparing simulated and measured muscle activities of the hand is cross-talk. Nevertheless, the results show that the hand model fits the experiment quite accurately despite some limitations and is a further step toward patient-specific modeling of the upper extremity. KW - Elektromyographie KW - Biomechanik KW - Simulation KW - Electromyography KW - Muscle KW - Musculoskeletal system KW - Signals KW - Simulation Y1 - 2021 U6 - https://doi.org/10.1115/1.4052115 VL - 144 IS - 2 PB - American Society of Mechanical Engineers, ASME ER - TY - JOUR A1 - Saffert, Anne-Sophie A1 - Melzner, Maximilian A1 - Dendorfer, Sebastian T1 - Biomechanical analysis of the right elevated glenohumeral joint in violinists during legato-playing JF - Technology and Health Care N2 - BACKGROUND: Many statistics reveal that violin players suffer most often from musculoskeletal disorders compared to musicians of other instrument groups. A common phenomenon, especially observed in violin beginners, is the tendency to elevate the right shoulder during playing the violin. This can probably lead to serious disorders in long-term practice with repetitive movements. OBJECTIVE: For this reason, this study investigated the relationship between the right shoulder elevation and the force in the right glenohumeral joint during violin playing. It was hypothesized that the forces in the right glenohumeral joint are higher during playing with the right shoulder raised compared to playing in normal posture. METHODS: Motion capture data from four experienced violinists was recorded and processed by means of musculoskeletal simulation to get the force and elevation angle while playing with raised shoulder and in normal position. RESULTS: The results indicate that the absolute values of the resulting force, as well as the forces in the mediolateral, inferosuperior, and anteroposterior directions, are higher in playing the violin with the shoulder raised than in a normal posture. CONCLUSIONS: Elevating the right shoulder while playing the violin may pose a potential problem. KW - Biomechanische Analyse KW - Schultergelenk KW - Verletzung KW - Violinspiel KW - biomechanics KW - violin KW - shoulder elevation KW - shoulder joint force KW - musculoskeletal disease Y1 - 2022 U6 - https://doi.org/10.3233/THC-219001 N1 - Corresponding author: Anne-Sophie Saffert VL - 30 IS - 1 SP - 177 EP - 186 PB - IOS Press ER - TY - JOUR A1 - Heine, Norbert A1 - Eigenberger, Andreas A1 - Brebant, Vanessa A1 - Kempa, Sally A1 - Seitz, Stephan A1 - Prantl, Lukas A1 - Kuehlmann, Britta T1 - The effect of radiotherapy on fat engraftment for complete breast reconstruction using lipofilling only JF - Archives of Gynecology and Obstetrics N2 - Purpose Lipofilling has been established as a standard technique for contour enhancement following breast reconstruction. However, there is a paucity in current literature regarding the use of this technique for complete reconstruction of the female breast as an alternative to conventional techniques, such as expander or flap-based procedures. In particular, the influence of pre-operative irradiation for successful reconstruction has rarely been examined in published studies. Here, the authors describe their experience with successful fat injection in pre-radiated breasts in comparison with non-pre-radiated patients. Methods In this retrospective study, we examined a total of 95 lipofilling treatments on 26 patients (28 breasts). All of them experienced mastectomy following breast cancer; local breast defects after partial resection of the gland were not included in this study. In total, 47 lipofilling procedures in 12 non-irradiated patients (14 breasts) and 48 procedures in 14 irradiated women (also 14 breasts) were performed. Per session, approximately 297 +/- 112 cc of adipose tissue was grafted in group A (no radiotherapy) and approximately 259 +/- 93 cc was grafted in group B (radiotherapy). Results Among the group of women without pre-operative radiation, 71% of breast reconstructions limited to lipofilling only showed constant engraftment of fat tissue with a successful reconstructive result, whereas only 21% of the patients with pre-radiated breasts showed complete reconstruction of the breast with a permanent fat in-growth. Conclusion Preoperative radiotherapy significantly impedes successful completion of breast reconstructions planned only by autologous fat transfer. Patients should be selected individually and carefully for complete breast reconstruction using lipofilling only. KW - Breast augmentation KW - Breast cancer KW - CANCER KW - Fat graft KW - Lipofilling KW - OUTCOMES KW - PLATELET-RICH PLASMA KW - RADIATION-THERAPY KW - Radiotherapy KW - RECIPIENT-SITE KW - Reconstruction Y1 - 2022 U6 - https://doi.org/10.1007/s00404-022-06610-4 PB - Springer ER - TY - JOUR A1 - Förstl, Nikolas A1 - Süß, Franz A1 - Englert, Carsten A1 - Dendorfer, Sebastian T1 - Design of a reverse shoulder implant to measure shoulder stiffness during implant component positioning JF - Medical Engineering & Physics N2 - To avoid dislocation of the shoulder joint after reverse total shoulder arthroplasty, it is important to achieve sufficient shoulder stability when placing the implant components during surgery. One parameter for assessing shoulder stability can be shoulder stiffness. The aim of this research was to develop a temporary reverse shoulder implant prototype that would allow intraoperative measurement of shoulder stiffness while varying the position of the implant components. Joint angle and torque measurement techniques were developed to determine shoulder stiffness. Hall sensors were used to measure the joint angles by converting the magnetic flux densities into angles. The accuracy of the joint angle measurements was tested using a test bench. Torques were determined by using thin-film pressure sensors. Various mechanical mechanisms for variable positioning of the implant components were integrated into the prototype. The results of the joint angle measurements showed measurement errors of less than 5° in a deflection range of ±15° adduction/abduction combined with ±45° flexion/extension. The proposed design provides a first approach for intra-operative assessment of shoulder stiffness. The findings can be used as a technological basis for further developments. Y1 - 2023 U6 - https://doi.org/10.1016/j.medengphy.2023.104059 N1 - Corresponding author: Sebstian Dendorfer VL - 121 PB - Elsevier ET - Journal Pre-proof ER - TY - CHAP A1 - Suess, Franz A1 - Melzner, Maximilian A1 - Dendorfer, Sebastian T1 - Towards ergonomics working - machine learning algorithms and musculoskeletal modeling T2 - IOP Conference Series: Materials Science and Engineering N2 - Ergonomic workplaces lead to fewer work-related musculoskeletal disorders and thus fewer sick days. There are various guidelines to help avoid harmful situations. However, these recommendations are often rather crude and often neglect the complex interaction of biomechanical loading and psychological stress. This study investigates whether machine learning algorithms can be used to predict mechanical and stress-related muscle activity for a standardized motion. For this purpose, experimental data were collected for trunk movement with and without additional psychological stress. Two different algorithms (XGBoost and TensorFlow) were used to model the experimental data. XGBoost in particular predicted the results very well. By combining it with musculoskeletal models, the method shown here can be used for workplace analysis but also for the development of real-time feedback systems in real workplace environments. Y1 - 2021 U6 - https://doi.org/10.1088/1757-899X/1208/1/012001 SN - 1757-899X N1 - Corresponding author: Sebastian Dendorfer VL - 1208 PB - IOP Publishing ER - TY - JOUR A1 - Dendorfer, Sebastian A1 - Gschoßman, Lukas T1 - Hightech in der Rehabiliation JF - BVOU Infobrief: Hightech in Orthopädie und Unfallchirurgie N2 - Aufgrund der steigenden Lebenserwartung und dem damit einhergehenden demographischen Wandel wird der Bedarf an Rehabilitations-Behandlungen in absehbarer Zukunft stark ansteigen. Ein Beispiel für diesen Trend ist die physiotherapeutische Behandlung nach Erhalt einer Knie-Totalendoprothese (Knie-TEP). So gehen Modellrechnungen basierend auf dem Bevölkerungswachstum und der bisherigen Prävalenz von Knie-TEPs davon aus, dass die Anzahl an durchgeführten Eingriffen in einkommensstarken Ländern wie Deutschland weiter zunehmen wird. Weiterhin stoßen traditionelle Rehabilitationsverfahren, gerade in strukturschwachen Regionen, schon heute an ihre Grenzen. Deutlich zu sehen war das während den Hochphasen der aktuellen Covid-19-Pandemie, als der Kontakt zwischen Therapeut*in und Patient*in flächendeckend eingeschränkt war. Eine erhöhte Nachfrage nach neuartigen Reha-Angeboten ist die logische Konsequenz. Innovative Konzepte sind daher dringend notwendig, um die daraus resultierenden technischen, sozialen und ökonomischen Herausforderungen zu bewältigen. Y1 - 2023 UR - https://www.bvou.net/infobrief-1-23/ SN - 2747-5913 IS - 1 SP - 9 EP - 11 PB - BVOU – Berufsverband für Orthopädie und Unfallchirurgie e.V. CY - Berlin ER - TY - GEN A1 - Krefting, Dagmar A1 - Zaunseder, Sebastian A1 - Säring, Dennis A1 - Wittenberg, Thomas A1 - Palm, Christoph A1 - Schiecke, Karin A1 - Krenkel, Lars A1 - Hennemuth, Anja A1 - Schnell, Susanne A1 - Spicher, Nicolai T1 - Blutdruck, Hämodynamik und Gefäßzustand: Innovative Erfassung und Bewertung – Schwerpunkt bildbasierte Verfahren T2 - 66. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e. V. (GMDS), 12. Jahreskongress der Technologie- und Methodenplattform für die vernetzte medizinische Forschung e. V. (TMF), 26. - 30.09.2021, online N2 - Einleitung: Blutdruck gilt als sogenannter Vitalparameter als einer der grundlegenden Indikatoren für den Gesundheitszustand einer Person. Sowohl zu niedriger als auch zu hoher Blutdruck kann lebensbedrohend sein, letzerer ist darüber hinaus ein Risikofaktor insbesondere für Herz-Kreislauferkrankungen, die trotz wichtiger Fortschritte in der Behandlung immer noch die häufigste Todesursache in Deutschland darstellen. Die Hämodynamik, also die raumzeitliche Dynamik des Blutflusses, und der Gefäßzustand sind eng verbunden mit dem Blutdruck und ebenfalls von hoher klinischer Relevanz, u.a. zur Identifikation von Durchblutungsstörungen und ungünstigen Druckverteilungen der Gefäßwand. Innovationen in der Messtechnik als auch in der Datenanalyse bieten heute neue Möglichkeiten der Erfassung und Bewertung von Blutdruck, Hämodynamik und Gefäßzustand [1], [2], [3], [4]. Methodik: In einer gemeinsamen Workshopserie der AG Medizinische Bild- und Signalverarbeitung der GMDS und des Fachausschusses Biosignale der DGBMT werden wir neue Ansätze und Lösungen für Mess- und Analyseverfahren zu Blutdruck und -fluss sowie zum Gefäßzustand vorstellen und diskutieren. Dabei stehen im ersten Workshop auf der GMDS Jahrestagung Bildbasierte Verfahren im Zentrum, während der zweite Workshop auf der DGBMT Jahrestagung den Fokus auf Biosignalbasierten Verfahren legt. Es werden aktuelle Forschungsergebnisse vorgestellt und diskutiert. Es sind jeweils mehrere Vorträge geplant mit ausreichend Zeit zur Diskussion. Folgende Vorträge sind geplant (Arbeitstitel): Sebastian Zaunseder: Videobasierte Erfassung des Blutdrucks Anja Hennemuth: A Visualization Toolkit for the Analysis of Aortic Anatomy and Pressure Distribution Lars Krenkel: Numerische Analyse der Rupturwahrscheinlichkeit zerebraler Aneurysmata Susanne Schnell: Messung des Blutflusses und hämodynamischer Parameter mit 4D flow MRI: Möglichkeiten und Herausforderungen Ergebnisse: Ziel des Workshops ist die Identifikation von innovativen Ansätzen und neuen Methoden zur qualitativen und quantitativen Bestimmung von hämodynamischen Parametern sowie deren kritische Bewertung durch die Community für die Eignung in der klinischen Entscheidungsunterstützung. Diskussion: Der Workshop leistet inhaltlich einen Beitrag zu zentralen Aspekten für die Herz-Kreislauf-Medizin. Er bringt dabei Expertise aus verschiedenen Bereichen zusammen und schlägt die Brücke zwischen Kardiologie, Medizininformatik und Medizintechnik. Schlussfolgerung: Innovative Technologien aus Medizintechnik und Informatik ermöglichen zunehmend einfache und raumzeitlich aufgelöste Erfassung und Bewertung wichtiger Informationen zur Unterstützung von Diagnose und Therapieverfolgung. [1] Zaunseder S, Trumpp A, Wedekind D, Malberg H. Cardiovascular assessment by imaging photoplethysmography - a review. Biomed Tech (Berl). 2018 Oct 25;63(5):617–34. [2] Huellebrand M, Messroghli D, Tautz L, Kuehne T, Hennemuth A. An extensible software platform for interdisciplinary cardiovascular imaging research. Comput Methods Programs Biomed. 2020 Feb;184:105277. [3] Schmitter S, Adriany G, Waks M, Moeller S, Aristova M, Vali A, et al. Bilateral Multiband 4D Flow MRI of the Carotid Arteries at 7T. Magn Reson Med. 2020 Oct;84(4):1947–60. [4] Birkenmaier C, and Krenkel, L. Flow in Artificial Lungs. In: New Results in Numerical and Experimental Fluid Mechanics XIII. Contributions to the 22nd STAB/DGLR Symposium. Springer; 2021. KW - Bildbasierte Verfahren KW - Blutdruck KW - Hämodynamik KW - Blutgefäß KW - Bildgebendes Verfahren Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0183-21gmds0167 ER - TY - GEN A1 - Tauwald, Sandra Melina A1 - Krenkel, Lars T1 - Elementary experimental setup for flow visualization in upper human respiratory tract T2 - 25th Congress of the European Society of Biomechanics, July 7-10, 2019, Vienna, Austria Y1 - 2019 UR - https://esbiomech.org/conference/archive/2019vienna/Contribution_195.pdf ER - TY - GEN A1 - Wagner, Thomas A1 - Krenkel, Lars A1 - Dönitz, Christian A1 - Brawanski, Alexander T1 - Influence of CFD Strategy on WSS and OSI Determination for Intracranial Aneurysm Rupture Assessment T2 - 25th Congress of the European Society of Biomechanics, July 7-10, 2019, Vienna, Austria Y1 - 2019 ER - TY - GEN A1 - Stelzer, Vera A1 - Rütten, Markus A1 - Krenkel, Lars T1 - Numerical Investigation of a 3D Dragonfly Wing Captured with a High-Resolution Micro-CT T2 - 8th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2022, 5-9 June 2022, Oslo, Norway N2 - The special wing geometry of dragonflies consisting of veins and a membrane forming a corrugated profile leads to special aerodynamic characteristics. To capture the governing flow regimes of a dragonfly wing in detail, a realistic wing model has to be investigated. Therefore, this study aimed to analyze the aerodynamic characteristics of a 3D dragonfly wing reconstructed from a high-resolution micro-CT scan. Afterwards, a spatially high discretized mesh was generated using the mesh generator CENTAUR™ 14.5.0.2 (CentaurSoft, Austin, TX, US) to finally conduct Computational Fluid Dynamics (CFD) investigations in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, US). Due to the small dimensions of the wing membrane, only the vein structure of a Camacinia Gigantea was captured at a micro-CT voxel size of 7 microns. The membrane was adapted and connected to the vein structure using a Boolean union operation. Occurring nconsistencies after combining the veins and the membrane were corrected using an adapted pymesh script [1]. As an initial study, only one quarter of the wing (outer wing section) was investigated to reduce the required computational effort. The resulting hybrid mesh consisting of 10 pseudo-structured prism layers along the wing surface and tetrahedra in the farfield area has 43 mio. nodes. The flow around the wing was considered to be incompressible and laminar using transient calculations. When the flow passes the vein structures, steady vortices occur in the corrugation valleys leading to recirculation zones. Therefore, the dragonfly wing resembles the profile of an airfoil. This leads to comparable lift coefficients of dragonfly wings and airfoil profiles at significantly reduced structural weight. The reconstructed geometry also included naturally occurring triangular prismlike serrated structures at the leading edge of the wing, which have comparable effects to micro vortex generators and might stabilize the recirculation zones. Further work aims to investigate the aerodynamic properties of a complete dragonfly wing during wing flapping. KW - CFD KW - Dragonfly KW - Aerodynamics KW - Gliding Flight Y1 - 2022 ER - TY - CHAP A1 - Birkenmaier, Clemens A1 - Krenkel, Lars ED - Dillmann, Andreas ED - Heller, Gerd ED - Krämer, Ewald ED - Wagner, Claus T1 - Convolutional Neural Networks for Approximation of Blood Flow in Artificial Lungs T2 - New Results in Numerical and Experimental Fluid Mechanics XIII: Contributions to the 22nd STAB/DGLR Symposium N2 - Blood flow in channels of varying diameters <500μm exhibits strong non-linear effects. Multiphase finite volume approaches are feasible, but still computationally costly. Here, the feasibility of applying convolutional neural networks for blood flow prediction in artificial lungs is investigated. Training targets are precomputed using an Eulerian two-phase approach. To match with experimental data, the interphase drag and lift, as well as intraphase shear-thinning are adapted. A recursively branching regression network and convolution/deconvolution networks with plain skip connections and densely connected skips are investigated. A priori knowledge is incorporated in the loss functional to prevent the network from learning non-physical solutions. Inference from neural networks is approximately six orders of magnitude faster than the classical finite volume approach. Even if resulting in comparably coarse flow fields, the neural network predictions can be used as close to convergence initial solutions greatly accelerating classical flow computations. KW - Deep learning fluid mechanics KW - Multiphase blood flow Y1 - 2021 SN - 978-3-030-79560-3 U6 - https://doi.org/10.1007/978-3-030-79561-0_43 IS - 1. Auflage SP - 451 EP - 460 PB - Springer International Publishing CY - Cham ER - TY - GEN A1 - Birkenmaier, Clemens A1 - Krenkel, Lars T1 - Towards a realistic model of blood viscosity and coagulation in membrane oxygenators T2 - 6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) - ECCM 6; 7th European Conference on Computational Fluid Dynamics - ECFD 7 : Glasgow, Scotland, UK, June 11-15, 2018 N2 - Modelling blood flow an shear induced coagulation in membraene oxygenators (MO) is challenging. The relevant geometry of oxygenator fibers (OF) and chaining threads is complex and spans several length scales. In relevant scales and regimes blood shows several significant non-Newtonian effects. Existing models are only capable of accounting for some, but not all relevant effects. Additionally, coagulation processes are influencing fluid properties and geometry significantly. Due to the enormous size of the discretised geometries highly detailed viscosity and coagulation properties of blodd flow in MOs. First step is to find a gemoetry dependent viscosity representation on basis of parametric micro channel experiments with anti-coagulated blood. Next step is a statistic coagulation model, based on micro channel experiments with human (re-calcified citrated) whole blood an evaluation of clinically used osygenators. Since shear rate dependent (i.e. viscosity dependet) coagulation in return influences the viscosity, a combined model with suitable implementation in a RANS framework is necessary. Towards this end, micro channel experiments with new and used single OFs triggering coagulation are performed. Structures of multimeric von Willebrand fibers (vWF), as indicator for shear induced coagulation, are compared to computed and measured flow conditions, using immunofluorescence microscopy, RANS-computations and µPIV, respectively. Preliminary examinations in clinically used MOs show good agreement between occurring structures of vWF, cell depositions and computed flow patterns (geometry form µCT-Scans). However, computed shear rates might be to low to actually trigger activation of vWF. The complex geometry of MOs results in huge meshes, which makes RANS with statistical modelling of viscosity and coagulation a reasonable approach. Towards this end, experimental data on micro channel level with evaluation on real application level is crucial. Especially regarding clotting processes, micro fluidic experiments are powerful research tool. KW - Blood Viscosity KW - Shear Raed Induced Coagulation KW - Membrane Oxygenator Y1 - 2018 ER - TY - GEN A1 - Tauwald, Sandra Melina A1 - Quadrio, Maurizio A1 - Rütten, Markus A1 - Stemmer, Christian A1 - Krenkel, Lars T1 - High Spatial Resolution Tomo-PIV of the Nasopharynx Focussing on the Physiological Breathing Cycle T2 - 23. DGLR Fach-Symposium Strömungen mit Ablösung, 09./10. November 2022, Berlin, Deutschland N2 - Investigations of complex patient-specific flow in the nasopharynx requires high resolution numerical calculations validated by reliable experiments. When building the validation base and the benchmark of computational fluid dynamics, an experimental setup of the nasal airways was developed. The applied optical measurement technique of tomo-PIV supplies information on the governing flow field in three dimensions. This paper presents tomo-PIV measurements of the highly complex patient-specific geometry of the human trachea. A computertomographic scan of a person’s head builds the basis of the experimental silicone model of the nasal airways. An optimised approach for precise refractive index matching avoids optical distortions even in highly complex non-free-of-sight 3D geometries. A linear-motor-driven pump generates breathing scenarios, based on measured breathing cycles. Adjusting of the CCD cameras‘ double-frame-rate PIV-Δt enables the detailed analysis of flow structures during different cycle phases. Merging regions of interest enables high spatial resolution acquisition of the flow field. KW - Tomographic PIV KW - Flow visualisation KW - Physiological Breathing KW - Nasal airflow Y1 - 2022 UR - https://www.dlr.de/as/Portaldata/5/Resources/dokumente/veranstaltungen/stab_workshop/Jahresbericht2022.pdf CY - Göttingen ER - TY - GEN A1 - Stelzer, Vera A1 - Tauwald, Sandra Melina A1 - Vielsmeier, Veronika A1 - Cieplik, Fabian A1 - Kandulski, Arne A1 - Schneider-Brachert, Wulf A1 - Wuensch, Olaf A1 - Rütten, Markus A1 - Krenkel, Lars T1 - Generation, Distribution, and Contagiousness of Surgical Smoke during Tracheotomies T2 - 23. DGLR Fach-Symposium Strömungen mit Ablösung, 09./10. November 2022, Berlin, Deutschland N2 - Surgical smoke has been a little discussed topic in the context of the current pandemic. Surgical smoke is generated during the cauterization of tissue with heat-generating devices and consists of 95% water vapor and 5% cellular debris in the form of particulate matter. In-vivo investigations are performed during tracheotomies where surgical smoke is produced during tissue electrocautery. Furthermore, in-vitro parametric studies to investigate the particle number and size distribution and the spatial distribution of surgical smoke with laser light sheet technique are conducted. The higher the power of the high-frequency-device the larger the particles in size and the higher the resulting particle counts. The images taken show the densest smoke at 40W with artificial saliva. The resulting characteristic size distribution, which may include viruses and bacterial components, confirms that the risk arising from surgical smoke should be considered. Furthermore, the experiments will provide the database for further numerical investigations. Y1 - 2022 UR - https://www.dlr.de/as/Portaldata/5/Resources/dokumente/veranstaltungen/stab_workshop/Jahresbericht2022.pdf CY - Göttingen ER - TY - JOUR A1 - Schaeffer, Leon A1 - Herrmann, David A1 - Schratzenstaller, Thomas A1 - Dendorfer, Sebastian A1 - Böhm, Valter T1 - Preliminary theoretical considerations on the stiffness characteristics of a tensegrity joint for the use in dynamic orthoses JF - Journal of Medical Robotics Research N2 - Early motion therapy plays an important role for effective long-term healing of joint injuries. In many cases, conventional dynamic orthoses fail to address the intricate movement possibilities of the underlying joints, limited by their simplistic joint representations, often represented by revolute joints, enabling rotations by only one axis. In this paper, a two-dimensional compliant tensegrity joint for use in biomedical applications is investigated. It consists of two compressed members and five compliant tensioned members. Relative movement possibilities are realized by the intrinsic compliance of the structure. In the development of these systems, the first step is the determination of the static stable equilibrium. This analysis is conducted in this paper by considering the potential energy approach or by using the geometric nonlinear finite element method. The mechanical behavior of the structure is assessed with a specific emphasis on its mechanical compliance. The primary objective of this study is the investigation of the influence of structural parameters on the overall stiffness and movability of the structure. The results underscore the significant effect of member parameters on the stiffness and movability of the compliant tensegrity joint, particularly under varying load magnitudes. These findings provide insights for optimizing the joint’s performance, contributing to its potential application in advanced orthotic and exoskeleton devices. KW - mechanical compliance KW - flexibility ellipsis KW - form-finding KW - tensegrity joint Y1 - 2023 U6 - https://doi.org/10.1142/S2424905X23400081 PB - World Scientific ER - TY - GEN A1 - Dendorfer, Sebastian T1 - Muskuloskelettale Simulation - Implikationen für die Hüftendoprothetik T2 - Primär- und Revisionsendoprothetik des Hüftgelenks Trends und zukünftige Herausforderungen, 11.-12.11.2022, OTH Ostbayerische Technische Hochschule, Regensburg Y1 - 2022 ER - TY - CHAP A1 - Krenkel, Lars A1 - Wagner, C. A1 - Wolf, U. A1 - Scholz, A. A1 - Terekhov, Maxim A1 - Rivoire, Julien A1 - Schreiber, W. ED - Hirschel, Ernst Heinrich ED - Schröder, Wolfgang ED - Fujii, Kozo ED - Haase, Werner ED - Leer, Bram ED - Leschziner, Michael A. ED - Pandolfi, Maurizio ED - Periaux, Jacques ED - Rizzi, Arthur ED - Roux, Bernard ED - Shokin, Yurii I. ED - Dillmann, Andreas ED - Heller, Gerd ED - Klaas, Michael ED - Kreplin, Hans-Peter ED - Nitsche, Wolfgang T1 - Protective Artificial Lung Ventilation: Impact of an Endotracheal Tube on the Flow in a Generic Trachea T2 - New Results in Numerical and Experimental Fluid Mechanics VII : Contributions to the 16th STAB/DGLR Symposium Aachen, Germany 2008 N2 - Computational Fluid Dynamics (CFD) and experimental investigations on a generic model of the trachea have been carried out focusing on the impact of an endotracheal tube (ETT) on the resulting flow regime. It could be shown that detailed modelling of the airway management devices is essential for proper flow prediction, but secondary details as Murphy Eyes can be neglected. Models with bending and connector promote the formation of stronger secondary flows and disturbances which persist for a longer time. KW - computational fluid dynamics KW - Computational Fluid Dynamics Simulation KW - Endotracheal Tube KW - Particle Image Velocimetry KW - Turbulent Kinetic Energy Y1 - 2010 SN - 978-3-642-14242-0 U6 - https://doi.org/10.1007/978-3-642-14243-7_62 SP - 505 EP - 512 PB - Springer Berlin Heidelberg CY - Berlin, Heidelberg ER - TY - GEN A1 - Krenkel, Lars T1 - Relevanz von Aerosolen im klinischen Kontext T2 - Innovationstag Hygiene 2021, Continental Arena, Regensburg, Deutschland Y1 - 2021 ER - TY - JOUR A1 - Stelzer, Vera A1 - Krenkel, Lars T1 - 2D numerical investigations derived from a 3D dragonfly wing captured with a high-resolution micro-CT JF - Technology and health care : official journal of the European Society for Engineering and Medicine N2 - BACKGROUND: Due to their corrugated profile, dragonfly wings have special aerodynamic characteristics during flying and gliding. OBJECTIVE: The aim of this study was to create a realistic 3D model of a dragonfly wing captured with a high-resolution micro-CT. To represent geometry changes in span and chord length and their aerodynamic effects, numerical investigations are carried out at different wing positions. METHODS: The forewing of a Camacinia gigantea was captured using a micro-CT. After the wing was adapted an error-free 3D model resulted. The wing was cut every 5 mm and 2D numerical analyses were conducted in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, USA). RESULTS: The highest lift coefficient, as well as the highest lift-to-drag ratio, resulted at 0 mm and an angle of attack (AOA) of 5∘. At AOAs of 10∘ or 15∘, the flow around the wing stalled and a Kármán vortex street behind the wing becomes CONCLUSIONS: The velocity is higher on the upper side of the wing compared to the lower side. The pressure acts vice versa. Due to the recirculation zones that are formed in valleys of the corrugation pattern the wing resembles the form of an airfoil. KW - aerodynamics KW - computational fluid dynamics KW - Dragonfly wing KW - gliding flight KW - insect flight Y1 - 2022 U6 - https://doi.org/10.3233/THC-219010 N1 - Corresponding author: Vera Stelzer VL - 30 IS - 1 SP - 283 EP - 289 PB - IOS Press ER - TY - JOUR A1 - Schecklmann, Martin A1 - Schmausser, Maximilian A1 - Klinger, Felix A1 - Kreuzer, Peter M. A1 - Krenkel, Lars A1 - Langguth, Berthold T1 - Resting motor threshold and magnetic field output of the figure-of-8 and the double-cone coil JF - scientific reports N2 - The use of the double-cone (DC) coil in transcranial magnetic stimulation (TMS) is promoted with the notion that the DC coil enables stimulation of deeper brain areas in contrast to conventional figure-of-8 (Fo8) coils. However, systematic comparisons of these two coil types with respect to the spatial distribution of the magnetic field output and also to the induced activity in superficial and deeper brain areas are limited. Resting motor thresholds of the left and right first dorsal interosseous (FDI) and tibialis anterior (TA) were determined with the DC and the Fo8 coil in 17 healthy subjects. Coils were orientated over the corresponding motor area in an angle of 45 degrees for the hand area with the handle pointing in posterior direction and in medio-lateral direction for the leg area. Physical measurements were done with an automatic gantry table using a Gaussmeter. Resting motor threshold was higher for the leg area in contrast to the hand area and for the Fo8 in contrast to the DC coil. Muscle by coil interaction was also significant providing higher differences between leg and hand area for the Fo8 (about 27%) in contrast to the DC coil (about 15%). Magnetic field strength was higher for the DC coil in contrast to the Fo8 coil. The DC coil produces a higher magnetic field with higher depth of penetration than the figure of eight coil. KW - ANTERIOR CINGULATE CORTEX KW - CONNECTIVITY KW - Depression KW - FRONTAL-CORTEX KW - PREDICTOR KW - RTMS KW - STIMULATION KW - TMS Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-58034-2 VL - 10 IS - 1 PB - Nature ER - TY - CHAP A1 - Birkenmaier, Clemens A1 - Krenkel, Lars ED - Chinesta, F. ED - Abgrall, R. ED - Allix, O. ED - Kalistke, M T1 - Convolutional Neural Networks for Approximation of Internal Non-Newtonian Multiphase Flow Fields T2 - 14th World Congress on Computational Mechanics (WCCM), ECCOMAS Congress 2020: 19–24 July 2020, Paris, France N2 - Neural networks (NNs) as an alternative method for universal approximation of differential equations have proven to be computationally efficient and still sufficiently accurate compared to established methods such as the finite volume method (FVM). Additionally, analysing weights and biases can give insights into the underlying physical laws. FVM and NNs are both based upon spacial discretisation. Since a Cartesian and equidistant grid is a raster graphics, image-to-image regression techniques can be used to predict phase velocity fields as well as particle and pressure distributions from simple mass flow boundary conditions. The impact of convolution layer depth and number of channels of a ConvolutionDeconvolution Regression Network (CDRN), on prediction performance of internal non-Newtownian multiphase flows is investigated. Parametric training data with 2055 sets is computed using FVM. To capture significant non-Newtownian effects of a particle-laden fluid (e.g. blood) flowing through small and non-straight channels, an Euler-Euler multiphase approach is used. The FVM results are normalized and mapped onto an equidistant grid as supervised learning target. The investigated NNs consist of n= {3, 5, 7} corresponding encoding/decoding blocks and different skip connections. Regardless of the convolution depth (i.e. number of blocks), the deepest spacial down-sampling via strided convolution is adjusted to result in a 1 × 1 × f · 2nfeature map, with f = {8, 16, 32}. The prediction performance expressed is as channel-averaged normalized root mean squared error (NRMSE). With a NRMSE of < 2 · 10-3, the best preforming NN has f = 32 initial feature maps, a kernel size of k = 4, n = 5 blocks and dense skip connections. Average inference time from this NN takes < 7 · 10-3s. Worst accuracy at NRMSE of approx 9 · 10-3is achieved without any skips, at k = 2, f = 16 and n = 3, but deployment takes only < 2 · 10-3s Given an adequate training, the prediction accuracy improves with convolution depth, where more features have higher impact on deeper NNs. Due to skip connections and batch normalisation, training is similarly efficient, regardless of the depth. This is further improved by blocks with dense connections, but at the price of a drastically larger model. Depending on geometrical complexity, spacial resolution is critical, as it increases the number of learnables and memory requirements massively. KW - Deep Learning KW - Convolutional neural networks KW - Non-Newtonian multiphase flow Y1 - 2021 U6 - https://doi.org/10.23967/wccm-eccomas.2020.107 PB - CIMNE ER - TY - GEN A1 - Birkenmaier, Clemens A1 - Krenkel, Lars A1 - Lehle, Karla T1 - Linking flow conditions in membrane oxygenators to arrangements of multimeric von-Willebrand-factor as indication for coagulation T2 - World Congress of Biomechanics 2018, Convention Centre Dublin, 8.-12. Juli 2018 N2 - Introduction Shear induced multimerisation of von-Willebrand-factor (vWF) is supposed to play an important role in coagulation inside extracorporeal membrane oxygenators. However, there is no proof that links observed vWF structures to computed or measured flow conditions. Methods The structures of multimeric vWF fibers, observed in clinically used membrane oxygenators is examined using immunofluorescence microscopy (IFM) using Carstairs’ staining method (positive ethics committee vote). The flow around the membrane fibres inside the oxygenator is investigated in terms of shear rate, wall shear velocity and streamlines by using CFD (RANS, Carreau-Yasuda viscosity, geometry remodelled after high-resolution µCT-scans). By interpreting the histological and numerical results in this common context, indications for shear induced coagulation mechanisms can be identified. Results The fibre structures of multimeric vWF build regular but not exactly symmetric formations around the contact face (CF) between the crosswise stacked oxygenator fibres (OF), see fig.1B, vWF marked red. Annular around the CF arranged, cells are likely to be found, see fig.1B, nuclei marked blue. The computed streamlines around the OF show attached flow around the circular fibres. However, the irregular arrangement of real OF produce considerable cross flow between the interconnected neighbouring channels, in contrast to previous 2D-simulations. Thus, the CF are washed around closely by blood, also from neighbouring channels. The wall shear velocity streamlines form regular, slightly asymmetric shapes around the contact faces. The occurring maximum shear rates are in the range of 1,000 1/s. Discussion The shapes of vWF structures found in clinically used oxygenators match the computational results in terms of wall shear velocity and streamlines well. The accumulation of cells close to the CF can also be explained by fluid mechanics, as there are small shear gradients and slow velocities. However, occurring shear rates between OFs are too low to trigger multimerisation of vWF. That raises the question where in the circuit the actual activation of vWF is started and how, at least partly chained, vWF multimeres are attracted towards the OF surface. A next step will be the investigation of the actual shear rate triggered (or mediated) multimerisation of vWF. Towards this end, microfluidic experiments with shear triggered coagulation will be performed. Also of big interest is the computation of the flow situation in the oxygenator in proximity to chaining threads, which have been ignored in computations so far. However, first a realistic representation of the effective viscosity in computations is needed, which is not available yet. Y1 - 2018 ER - TY - GEN A1 - Krenkel, Lars A1 - Michel, Johanna A1 - Keil, Niklas A1 - Daschner, Jan T1 - Experimental Investigation of Logitudinal Folds in Endotracheal Tube Cuffs and their Correlation to Silent Breathing T2 - 23. DGLR Fach-Symposium Strömungen mit Ablösung, 09./10. November 2022, Berlin, Deutschland N2 - Air leakage past High-Volume-Low-Pressure (HVLP) endotracheal tube (ETT) cuffs creates a potential infection risk for health care professionals during ventilation of patients suffering from contagious airborne diseases. However, unlike silent aspiration, a phenomenon where fluids enter the airways of intubated patients, the aspect of aerosol emergence through cuff folds -what we called accordingly “silent breathing” (SB)- has not been investigated in detail so far. This study investigates air leakage past HVLP cuffs with varying cuff pressures under realistic artificial breathing scenarios experimentally and in addition numerically. The focus was laid on the parametric investigation of the occurrence and furthermore on different influencing factors of silent breathing. The morphology of the folds responsible for the leakage was captured using high-resolution 3D microcomputed tomography (μCT). For the numerical investigations (Com-putational Fluid Dynamics - CFD), the commercial CFD Software package FLUENT 2021 R2 (ANSYS, Inc., Canonsburg, PA, US), as well as the DLR in-house research code THETA has been used. KW - Silent Breathing KW - Aerosols KW - CFD KW - Endotracheal Intubation Y1 - 2022 UR - https://www.dlr.de/as/Portaldata/5/Resources/dokumente/veranstaltungen/stab_workshop/Jahresbericht2022.pdf CY - Göttingen ER - TY - RPRT A1 - Steiger, Tamara A1 - Foltan, Maik A1 - Philipp, Alois A1 - Müller, Thomas A1 - Gruber, Michael Andreas A1 - Bredthauer, Andre A1 - Krenkel, Lars A1 - Birkenmaier, Clemens A1 - Lehle, Karla T1 - Accumulations of von Willebrand factor within ECMO oxygenators: Potential indicator of coagulation abnormalities in critically ill patients? N2 - Clot formation within membrane oxygenators (MOs) remains a critical problem during extracorporeal membrane oxygenation (ECMO). The composition of the clots—in particular, the presence of von Willebrand factor (vWF)—may be an indicator for prevalent nonphysiological flow conditions, foreign body reactions, or coagulation abnormalities in critically ill patients. Mats of interwoven gas exchange fibers from randomly collected MOs (PLS, Maquet, Rastatt, Germany) of 21 patients were stained with antibodies (anti‐vWF and anti‐P‐selectin) and counterstained with 4′,6‐diamidino‐2‐phenylindole. The extent of vWF‐loading was correlated with patient and technical data. While 12 MOs showed low vWF‐loadings, 9 MOs showed high vWF‐loading with highest accumulations close to crossing points of adjacent gas fibers. The presence and the extent of vWF‐fibers/“cobwebs,” leukocytes, platelet–leukocyte aggregates (PLAs), and P‐selectin‐positive platelet aggregates were independent of the extent of vWF‐loading. However, the highly loaded MOs were obtained from patients with a significantly elevated SOFA score, severe thrombocytopenia, and persistent liver dysfunction. The coagulation abnormalities of these critically ill patients may cause an accumulation of the highly thrombogenic and elongated high‐molecular‐weight vWF multimers in the plasma which will be trapped in the MOs during the ECMO therapy. Y1 - 2019 ER - TY - JOUR A1 - Birkenmaier, Clemens A1 - Dornia, Christian A1 - Lehle, Karla A1 - Müller, Thomas A1 - Gruber, Michael Andreas A1 - Philipp, Alois A1 - Krenkel, Lars T1 - Analysis of Thrombotic Deposits in Extracorporeal Membrane Oxygenators by High-resolution Microcomputed Tomography: A Feasibility Study JF - ASAIO Journal / American Society for Artificial Internal Organs N2 - Coagulative disorders, especially clotting during extracorporeal membrane oxygenation, are frequent complications. Direct visualization and analysis of deposits in membrane oxygenators using computed tomography (CT) may provide an insight into the underlying mechanisms causing thrombotic events. However, the already established multidetector CT1 (MDCT) method shows major limitations. Here, we demonstrate the feasibility of applying industrial micro-CT (μCT) to circumvent these restrictions. Three clinically used membrane oxygenators were investigated applying both MDCT and μCT. The scans were analyzed in terms of clot volume and local clot distribution. As validation, the clot volume was also determined from the fluid volume, which could be filled into the respective used oxygenator compared to a new device. In addition, cross-sectional CT images were compared with crosscut oxygenators. Based on the μCT findings, a morphological measure (sphericity) for assessing clot structures in membrane oxygenators is introduced. Furthermore, by comparing MDCT and μCT results, an augmentation of the MDCT method is proposed, which allows for improved clot volume determination in a clinical setting. Y1 - 2020 U6 - https://doi.org/10.1097/MAT.0000000000001089 SN - 1538-943X VL - 66 IS - 8 SP - 922 EP - 928 PB - Lippincott Williams & Wilkins ER - TY - GEN A1 - Birkenmaier, Clemens A1 - Dornia, Christian A1 - Lehle, Karla A1 - Krenkel, Lars T1 - Feasibility of detecting thrombotic deposits in membrane oxygenators using micro computed tomography T2 - 25th Congress of the European Society of Biomechanics, July 7-10, 2019, Vienna, Austria Y1 - 2019 UR - https://esbiomech.org/conference/archive/2019vienna/Contribution_129.pdf ER - TY - GEN A1 - Krenkel, Lars T1 - Maskenpflicht für Aerosole – wie wir medizinisches Personal in der Pandemie schützen T2 - TRIOKON Digital 2021 : Zukunft Ostbayern, 29.09.2021, Weiden, Deutschland KW - Aerosole KW - Pandemie KW - SARS-CoV-2 Y1 - 2021 UR - https://www.youtube.com/watch?v=bYRFpp_Xxvc ER - TY - CHAP A1 - Stelzer, Vera A1 - Tauwald, Sandra Melina A1 - Vielsmeier, Veronika A1 - Cieplik, Fabian A1 - Kandulski, Arne A1 - Schneider-Brachert, Wulf A1 - Wünsch, Olaf A1 - Rütten, Markus A1 - Krenkel, Lars ED - Dillman, Andreas ED - Heller, Gerd ED - Kraemer, Ewald ED - Wagner, Claus ED - Weiss, Julien T1 - Generation and Distribution of Surgical Smoke During High Frequency Electrocauterization T2 - New Results in Numerical and Experimental Fluid Mechanics XIV. STAB/DGLR Symposium 2022 N2 - Surgical Smoke is generated during the cauterization of tissue with high-frequency (HF) devices and consists of 95% water vapor and 5% cellular debris. When the coagulation tweezers, which are supplied with HF voltage by the HF device, touch tissue, the electric circuit is closed, and smoke is generated by the heat. In-vivo investigations are performed during tracheotomies where surgical smoke is produced during coagulation of tissue. Furthermore, in-vitro parametric studies to investigate the particle number and size distribution and the spatial distribution of surgical smoke with laser light sheet technique are conducted. With higher power of the HF device, the particles generated are larger in size and the total number of particles generated is also higher. Adding artificial saliva to the tissue shows even higher particle counts. The study by laser light sheet also confirms this. The resulting characteristic size distribution, which may include viruses and bacterial components, confirms considering the risk arising from surgical smoke. Furthermore, the experiments will provide the database for further numerical investigations. KW - Surgical smoke KW - Fluid Mechanics KW - Aerosols KW - Tracheotomies Y1 - 2023 SN - 978-3-031-40481-8 U6 - https://doi.org/10.1007/978-3-031-40482-5_53 SP - 559 EP - 568 PB - Springer Nature Switzerland AG CY - Cham, Switzerland ER - TY - JOUR A1 - Lingel, Maximilian P. A1 - Haus, Moritz A1 - Paschke, Lukas A1 - Foltan, Maik A1 - Lubnow, Matthias A1 - Gruber, Michael A1 - Krenkel, Lars A1 - Lehle, Karla T1 - Clinical relevance of cell-free DNA during venovenous extracorporeal membrane oxygenation JF - Artificial organs N2 - BACKGROUND: Thrombosis remains a critical complication during venovenous extracorporeal membrane oxygenation (VV ECMO). The involvement of neutrophil extracellular traps (NETs) in thrombogenesis has to be discussed. The aim was to verify NETs in the form of cell-free DNA (cfDNA) in the plasma of patients during ECMO. METHODS: A fluorescent DNA-binding dye (QuantifFluor®, Promega) was used to detect cell-free DNA in plasma samples. cfDNA concentrations from volunteers (n = 21) and patients (n = 9) were compared and correlated with clinical/technical data before/during support, ECMO end and time of a system exchange. RESULTS: Before ECMO, patients with a median (IQR) age of 59 (51/63) years, SOFA score of 11 (10/15), and ECMO run time of 9.0 (7.0/19.5) days presented significantly higher levels of cfDNA compared to volunteers (6.4 (5.8/7.9) ng/μL vs. 5.9 (5.4/6.3) ng/μL; p = 0.044). Within 2 days after ECMO start, cfDNA, inflammatory, and hemolysis parameters remained unchanged, while platelets decreased (p = 0.005). After ECMO removal at the end of therapy, cfDNA, inflammation, and coagulation data (except antithrombin III) remained unchanged. The renewal of a system resulted in known alterations in fibrinogen, d-dimers, and platelets, while cfDNA remained unchanged. CONCLUSION: Detection of cfDNA in plasma of ECMO patients was not an indicator of acute and circuit-induced thrombogenesis. KW - blood KW - cell- free DNA KW - coagulation KW - ECMO KW - inflammation KW - neutrophil extracellular traps Y1 - 2023 U6 - https://doi.org/10.1111/aor.14616 SN - 1525-1594 VL - 47 IS - 11 SP - 1720 EP - 1731 PB - Wiley ER - TY - JOUR A1 - Tauwald, Sandra Melina A1 - Erzinger, Florian A1 - Quadrio, Maurizio A1 - Rütten, Markus A1 - Stemmer, Christian A1 - Krenkel, Lars T1 - Tomo-PIV in a patient-specific model of human nasal cavities: a methodological approach JF - Measurement Science and Technology N2 - The human nose serves as the primary gateway for air entering the respiratory system and plays a vital role in breathing. Nasal breathing difficulties are a significant health concern, leading to substantial healthcare costs for patients. Understanding nasal airflow dynamics is crucial for comprehending respiratory mechanisms. This article presents a detailed study using tomo-Particle Image Velocimetry (PIV) to investigate nasal airflow dynamics while addressing its accuracy. Embedded in the OpenNose project, the work described aims to provide a validation basis for different numerical approaches to upper airway flow. The study includes the manufacturing of a transparent silicone model based on a clinical CT scan, refractive index matching to minimize optical distortions, and precise flow rate adjustments based on physiological breathing cycles. This method allows for spatial high-resolution investigations in different regions of interest within the nasopharynx during various phases of the breathing cycle. The results demonstrate the accuracy of the investigations, enabling detailed analysis of flow structures and gradients. This spatial high-resolution tomo-PIV approach provides valuable insights into the complex flow phenomena occurring during the physiological breathing cycle in the nasopharynx. The study's findings contribute to advancements in non-free-of-sight experimental flow investigation of complex cavities under nearly realistic conditions. Furthermore, reliable and accurate experimental data is crucial for properly validating numerical approaches that compute this patient-specific flow for clinical purposes. Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-70393 N1 - Corresponding author: Sandra Melina Tauwald VL - 35 IS - 5 PB - IOP Publishing ER - TY - JOUR A1 - Tauwald, Sandra Melina A1 - Michel, Johanna A1 - Brandt, Marie A1 - Vielsmeier, Veronika A1 - Stemmer, Christian A1 - Krenkel, Lars T1 - Experimental studies and mathematical modeling of the viscoelastic rheology of tracheobronchial mucus from respiratory healthy patients JF - Multidisciplinary Respiratory Medicine N2 - BACKGROUND: Tracheobronchial mucus plays a crucial role in pulmonary function by providing protection against inhaled pathogens. Due to its composition of water, mucins, and other biomolecules, it has a complex viscoelastic rheological behavior. This interplay of both viscous and elastic properties has not been fully described yet. In this study, we characterize the rheology of human mucus using oscillatory and transient tests. Based on the transient tests, we describe the material behavior of mucus under stress and strain loading by mathematical models. METHODS: Mucus samples were collected from clinically used endotracheal tubes. For rheological characterization, oscillatory amplitude-sweep and frequency-sweep tests, and transient creep-recovery and stress-relaxation tests were performed. The results of the transient test were approximated using the Burgers model, the Weibull distribution, and the six-element Maxwell model. The three-dimensional microstructure of the tracheobronchial mucus was visualized using scanning electron microscope imaging. RESULTS: Amplitude-sweep tests showed storage moduli ranging from 0.1 Pa to 10000 Pa and a median critical strain of 4 %. In frequency-sweep tests, storage and loss moduli increased with frequency, with the median of the storage modulus ranging from 10 Pa to 30 Pa, and the median of the loss modulus from 5 Pa to 14 Pa. The Burgers model approximates the viscoelastic behavior of tracheobronchial mucus during a constant load of stress appropriately (R2 of 0.99), and the Weibull distribution is suitable to predict the recovery of the sample after the removal of this stress (R2 of 0.99). The approximation of the stress-relaxation test data by a six-element Maxwell model shows a larger fit error (R2 of 0.91). CONCLUSIONS: This study provides a detailed description of all process steps of characterizing the rheology of tracheobronchial mucus, including sample collection, microstructure visualization, and rheological investigation. Based on this characterization, we provide mathematical models of the rheological behavior of tracheobronchial mucus. These can now be used to simulate mucus flow in the respiratory system through numerical approaches. KW - tracheobronchial mucus KW - rheological model KW - viscoelasticity Y1 - 2023 U6 - https://doi.org/10.4081/mrm.2023.923 SN - 2049-6958 N1 - Corresponding author: Sandra Melina Tauwald VL - 18 IS - 1 PB - PAGEPress CY - Pavia, Italy ER - TY - CHAP A1 - Tauwald, Sandra Melina A1 - Quadrio, Maurizio A1 - Rütten, Markus A1 - Stemmer, Christian A1 - Krenkel, Lars T1 - High Spatial Resolution Tomo-PIV of the Trachea Focussing on the Physiological Breathing Cycle T2 - New Results in Numerical and Experimental Fluid Mechanics XIV - Contributions to the 23nd STAB/DGLR Symposium N2 - Investigations of complex patient-specific flow in the nasopharynx requires high resolution numerical calculations validated by reliable experiments. When building the validation base and the benchmark of computational fluid dynamics, an experimental setup of the nasal airways was developed. The applied optical measurement technique of tomo-PIV supplies information on the governing flow field in three dimensions. This paper presents tomo-PIV measurements of the highly complex patient-specific geometry of the human trachea. A computertomographic scan of a person’s head builds the basis of the experimental silicone model of the nasal airways. An optimised approach for precise refractive index matching avoids optical distortions even in highly complex non-free-of-sight 3D geometries. A linear-motor-driven pump generates breathing scenarios, based on measured breathing cycles. Adjusting of the CCD cameras‘ double-frame-rate PIV-Δt enables the detailed analysis of flow structures during different cycle phases. Merging regions of interest enables high spatial resolution acquisition of the flow field. KW - Tomographic PIV KW - Flow visualisation KW - Breathing cycle KW - Nasal airflow Y1 - 2023 N1 - Accepted for publication, not yet published PB - Springer ER - TY - CHAP A1 - Fuhrmann, Thomas T1 - Semi-Structured Lab Projects in Communication Engineering Education T2 - 2023 IEEE Global Engineering Education Conference (EDUCON), 01-04 May 2023, Kuwait N2 - It is generally known that project-based learning is a very important part of engineering education to connect theoretical knowledge with practical work. Students learn to apply their knowledge to real-world challenges as it is the case in their later professional life. If students are not used to project work or the scientific topic is new and relatively complex, they may be overwhelmed. The consequence is that students achieve poor results, are frustrated, and therefore learning success is low. Semi-structured projects are introduced that combine the advantages of structured experiments with projects. The project work is structured into several parts with detailed descriptions of the tasks. In the end, students get similar results to doing a free project, but the success rate is higher due to higher guidance. Therefore, these semi-structured projects are seen to be an appropriate method to guide students to learn how to do project work. The feedback from most students is very positive. Some students with no previous lab experience complained about the project work and wished for more guidance to become familiar with lab work. In sum, the student feedback is encouraging to develop semi-structured projects further. KW - Knowledge engineering KW - Task analysis KW - Communication engineering education Y1 - 2023 U6 - https://doi.org/10.1109/EDUCON54358.2023.10125244 SP - 1 EP - 5 PB - IEEE ER - TY - CHAP A1 - Birkenmaier, Clemens A1 - Steiger, Tamara A1 - Philipp, Alois A1 - Lehle, Karla A1 - Krenkel, Lars T1 - Flow-induced accumulations of von Willebrand factor inside oxygenators during extracorporeal life support therapy T2 - Proceedings of 12th International Conference BIOMDLORE 2018, June 28–30, 2018, Białystok, Poland N2 - BACKGROUND: Shear-induced conformational changes of von Willebrand factor (vWF) may be responsible for coagulation disorder and clot formation inside membrane oxygenators (MOs) during extracorporeal membrane oxygenation (ECMO) therapy. OBJECTIVE: The aim was to identify vWF structures inside clinically used MOs and employ computational fluid dynamics to verify the corresponding flow conditions. METHODS: Samples from gas exchange membranes (GEM) from MOs were analysed for accumulations of vWF and P-selectin-positive platelets using immunofluorescence techniques. Streamlines and shear rates of the flow around GEMs were computed using a laminar steady Reynolds-Averaged-Navier-Stokes approach. RESULTS: Most samples were colonized with equally distributed leukocytes, integrated in thin cobweb-like vWF-structures. Only 25 % of the samples showed extended accumulations of vWF. Computed streamlines showed considerable cross flow between interconnected neighbouring channels. Stagnation points were non-symmetric and contact faces were washed around closely. The occurring maximum shear rates ranged from 2,500 to 3,000 1/s. CONCLUSIONS: If pronounced vWF structures are present, shape and extent match the flow computations well. Computed shear rates bear a critical degree of uncertainty due to the improper viscosity model. If flow conditions inside the MO were sufficient to affect vWF, a more consistent distribution of vWF across the samples should be present. KW - Blood Viscosity KW - Shear Rate Induced Coagulation KW - Hemodynamics KW - Membrane Oxygenator KW - von Willebrand factor Y1 - 2018 SN - 978-1-5386-2396-1 U6 - https://doi.org/10.1109/BIOMDLORE.2018.8467205 PB - IEEE CY - Piscataway, NJ ER - TY - JOUR A1 - Steiger, Tamara A1 - Foltan, Maik A1 - Philipp, Alois A1 - Mueller, Thomas A1 - Gruber, Michael Andreas A1 - Bredthauer, Andre A1 - Krenkel, Lars A1 - Birkenmaier, Clemens A1 - Lehle, Karla T1 - Accumulations of von Willebrand factor within ECMO oxygenators: Potential indicator of coagulation abnormalities in critically ill patients? JF - Artificial Organs N2 - Clot formation within membrane oxygenators (MOs) remains a critical problem during extracorporeal membrane oxygenation (ECMO). The composition of the clots-in particular, the presence of von Willebrand factor (vWF)-may be an indicator for prevalent nonphysiological flow conditions, foreign body reactions, or coagulation abnormalities in critically ill patients. Mats of interwoven gas exchange fibers from randomly collected MOs (PLS, Maquet, Rastatt, Germany) of 21 patients were stained with antibodies (anti-vWF and anti-P-selectin) and counterstained with 4 ',6-diamidino-2-phenylindole. The extent of vWF-loading was correlated with patient and technical data. While 12 MOs showed low vWF-loadings, 9 MOs showed high vWF-loading with highest accumulations close to crossing points of adjacent gas fibers. The presence and the extent of vWF-fibers/"cobwebs," leukocytes, platelet-leukocyte aggregates (PLAs), and P-selectin-positive platelet aggregates were independent of the extent of vWF-loading. However, the highly loaded MOs were obtained from patients with a significantly elevated SOFA score, severe thrombocytopenia, and persistent liver dysfunction. The coagulation abnormalities of these critically ill patients may cause an accumulation of the highly thrombogenic and elongated high-molecular-weight vWF multimers in the plasma which will be trapped in the MOs during the ECMO therapy. KW - ECMO KW - PLATELET ACTIVATION KW - THROMBOSIS KW - BLOOD FLOW KW - INFLAMMATION Y1 - 2019 U6 - https://doi.org/10.1111/aor.13513 SN - 1525-1594 VL - 43 IS - 11 SP - 1065 EP - 1076 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Philipp, Alois A1 - de Somer, Filip A1 - Foltan, Maik A1 - Bredthauer, Andre A1 - Krenkel, Lars A1 - Zeman, Florian A1 - Lehle, Karla T1 - Life span of different extracorporeal membrane systems for severe respiratory failure in the clinical practice JF - PLOS ONE N2 - Over the past decade, veno-venous extracorporeal membrane oxygenation (vvECMO) has been increasingly utilized in respiratory failure in patients. This study presents our institution´s experience focusing on the life span of ECMO systems reflecting the performance of a particular system. A retrospective review of our ECMO database identified 461 adult patients undergoing vvECMO (2010-2017). Patients that required more than one system and survived the first exchange >24 hours (n = 139) were included. Life span until the first exchange and exchange criteria were analyzed for all systems (PLS, Cardiohelp HLS-set, both Maquet Cardiopulmonary, Rastatt, Germany; Deltastream/Hilite7000LT, iLA-activve, Xenios/NovaLung, Heilbronn, Germany; ECC.O5, LivaNova, Mirandola, Italy). At our ECMO center, the frequency of a system exchange was 30%. The median (IQR) life span was 9 (6-12) days. There was no difference regarding the different systems (p = 0.145 and p = 0.108, respectively). However, the Deltastream systems were exchanged more frequently due to elective technical complications (e. g. worsened gas transfer, development of coagulation disorder, increased bleedings complications) compared to the other exchanged systems (p = 0.013). In summary, the used ECMO systems are safe and effective for acute respiratory failure. There is no evidence for the usage of a specific system. Only the increased predictability of an imminent exchange preferred the usage of a Deltastream system. However, the decision to use a particular system should not depend solely on the possible criteria for an exchange. KW - Equipment Failure Analysis/statistics & numerical data KW - Extracorporeal Membrane Oxygenation/instrumentation KW - Membrane/classification/standards/statistics & numerical data KW - Primary Health Care/statistics & numerical data KW - Respiratory Distress Syndrome/therapy KW - Retrospective Studies KW - Severity of Illness Index KW - Time factors KW - MULTIDETECTOR COMPUTED-TOMOGRAPHY KW - THROMBOTIC DEPOSITS KW - ECMO SYSTEMS KW - Flow KW - OXYGENATION Y1 - 2018 U6 - https://doi.org/10.1371/journal.pone.0198392 VL - 13 IS - 6 SP - 1 EP - 10 PB - PLOS ER - TY - CHAP A1 - Schaeffer, Leon A1 - Herrmann, David A1 - Böhm, Valter T1 - Theoretical considerations on a 2D compliant tensegrity joint in context of a biomedical application T2 - Engineering for a changing world : 60th ISC, Ilmenau Scientific Colloquium, Technische Universität Ilmenau, September 4-8, 2023 N2 - In this paper, a two-dimensional compliant tensegrity joint was investigated for potential biomedical applications such as orthotics or exoskeletons. The structure consists of two compressed members connected by five compliant tensioned members. The concept is based on the tensegrity principle, which allows the realization of dynamic orthoses without conventional hinge joints. Another advantage is the adaptability to the individual needs of the patient through a suitable design of the structure and the careful selection of the characteristics of the elements. Using geometric nonlinear analysis, the mechanical behavior of the structure was investigated, focusing on mechanical compliance. The main objective was to determine the influence of the initial length and stiffness of the tensioned members and the influence of the magnitude of external forces on the overall stiffness of the movable member of the structure. The results highlight the significant impact of member parameters on the structure's stiffness and movability under varying load magnitudes. The research laid the foundation for future development of dynamic orthoses based on this structure. Y1 - 2023 U6 - https://doi.org/10.22032/dbt.58879 SP - 1 EP - 15 PB - Technische Universität Ilmenau CY - Ilmenau ER - TY - CHAP A1 - Schaeffer, Leon A1 - Herrmann, David A1 - Böhm, Valter T1 - Voruntersuchung einer vorgespannten nachgiebigen Struktur für den Einsatz in dynamischen Handorthesen T2 - 9. IFToMM D-A-CH Konferenz, 16./17. März 2023, Universität Basel N2 - In diesem Beitrag erfolgt die theoretische Untersuchung einer zweidimensionalen nachgiebigen Tensegrity-Struktur in Hinsicht auf ihre potenzielle Eignung als Basisstruktur für eine dynamische Handorthese. Translatorische und rotatorische relative Bewegungsmöglichkeiten zwischen den Drucksegmenten der Struktur sind möglich, da diese Segmente durch nachgiebige Zugsegmente miteinander verbunden sind. Die Form der Struktur und ihre Vorspannung in einer statisch stabilen Gleichgewichtskonfiguration werden mit Hilfe der Minimierung des Kräfte- und Momentenungleichgewichts, der Betrachtung der potentiellen Energie der Struktur und einem Ansatz mittels statischer Finite-Elemente-Methode (FEM) in Abhängigkeit der Segmentparameter untersucht. N2 - This paper presents a theoretical investigation of a two-dimensional compliant tensegrity structure with respect to its potential suitability as a base structure for a dynamic hand orthosis. Translational and rotational relative motion possibilities between the pressure segments of the structure are possible, as these segments are connected by compliant tension segments. The shape of the structure and its preload in a static stable equilibrium configuration are investigated using minimization of force and moment imbalance, consideration of the potential energy of the structure, and a static finite element method (FEM) approach as a function of segment parameters. T2 - Preliminary investigation of a prestressed compliant structure for use in dynamic hand orthoses Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:465-20230314-153711-8 PB - DuEPublico CY - Duisburg-Essen ER - TY - CHAP A1 - Schaeffer, Leon A1 - Herrmann, David A1 - Böhm, Valter T1 - Preliminary considerations on the form-finding of a tensegrity joint to be used in dynamic orthoses T2 - 8th International Conference on Biomedical Engineering and Applications (ICBEA 2024), Tokio, 18-21. March 2024 Y1 - 2024 PB - ACM ET - accepted paper ER - TY - JOUR A1 - Bartsch, Alexander A1 - Beham, Daniela A1 - Gebhardt, Jakob A1 - Ehrlich, Ingo A1 - Schratzenstaller, Thomas A1 - Monkman, Gareth J. T1 - Mechanical Properties of NdPrFeB Based Magnetoactive Bisphenol-Free Boron-Silicate Polymers JF - Journal of Nanomedicine and Nanotechnology N2 - Following a ban on many materials containing bisphenol-A, new bisphenol-free Boron silicates have been found as substitutes. The purpose of this study is to describe the mechanical properties of these bisphenol-free magnetoactive borosilicate polymers containing hard magnetic particles. Samples of 0%, 33% and 66% by wt. were loaded for compression using a universal testing machine. The maximum forces occurring for different travel speeds were compared before and after post-magnetization treatments. The post-magnetization included 2 stages. In addition, the change in mechanical properties within 24 hours after the post-magnetization process was investigated. Furthermore, the influence of speed and particle content were investigated. In general, there is a correlation between the required compressive force and, the level of post-magnetization stress, the increase in travel speed and particle content in the boron silicate. Comparison of the non-post-magnetized and post-magnetized samples using two-tailed t-tests shows that the p-values for all weight fraction changes in NdPrFeB particles and travel speeds are less than 0.001. Also, a comparison between tests in which the traverse speed was varied also showed significant changes in the resulting compression forces. The same is valid for changes in the weight ratio of the NdPrFeB particles in the samples. For post-magnetized samples, no significant difference can be observed in the first 24 hours following magnetization. In summary, the material presents viscoelastic, plastic force-displacement behavior, which can be well recognized by its bi-linear curve shape. The investigation shows that borosilicate polymers based on NdPrFeB can have their mechanical behavior modified and controlled by post-magnetization processes. This opens new possibilities for many future applications. Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-67425 UR - https://www.walshmedicalmedia.com/open-access/mechanical-properties-of-ndprfeb-based-magnetoactive-bisphenolfree-boronsilicate-polymers-124385.html SN - 2157-7439 N1 - Corresponding author: Alexander Bartsch VL - 14 IS - 6 PB - Walsh Medical Media ER - TY - JOUR A1 - Wagner, Maria Stella A1 - Kranz, Michael A1 - Krenkel, Lars A1 - Pointner, Daniel A1 - Foltan, Maik A1 - Lubnow, Matthias A1 - Lehle, Karla ED - Becatti, Matteo T1 - Computer based visualization of clot structures in extracorporeal membrane oxygenation and histological clot investigations for understanding thrombosis in membrane lungs JF - Frontiers in Medicine N2 - Extracorporeal membrane oxygenation (ECMO) was established as a treatment for severe cardiac or respiratory disease. Intra-device clot formation is a common risk. This is based on complex coagulation phenomena which are not yet sufficiently understood. The objective was the development and validation of a methodology to capture the key properties of clots deposed in membrane lungs (MLs), such as clot size, distribution, burden, and composition. One end-oftherapy PLS ML was examined. Clot detection was performed using multidetector computed tomography (MDCT), microcomputed tomography (μCT), and photography of fiber mats (fiber mat imaging, FMI). Histological staining was conducted for von Willebrand factor (vWF), platelets (CD42b, CD62P), fibrin, and nucleated cells (4′, 6-diamidino-2-phenylindole, DAPI). The three imaging methods showed similar clot distribution inside the ML. Independent of the imaging method, clot loading was detected predominantly in the inlet chamber of the ML. The μCT had the highest accuracy. However, it was more expensive and time consuming than MDCT or FMI. The MDCT detected the clots with low scanning time. Due to its lower resolution, it only showed clotted areas but not the exact shape of clot structures. FMI represented the simplest variant, requiring little effort and resources. FMI allowed clot localization and calculation of clot volume. Histological evaluation indicated omnipresent immunological deposits throughout the ML. Visually clot-free areas were covered with leukocytes and platelets forming platelet-leukocyte aggregates (PLAs). Cells were embedded in vWF cobwebs, while vWF fibers were negligible. In conclusion, the presented methodology allowed adequate clot identification and histological classification of possible thrombosis markers such as PLAs. KW - ECMO KW - membrane lung KW - µCT KW - MDCT KW - shear induced clotting KW - vWF KW - histological evaluation Y1 - 2024 U6 - https://doi.org/10.3389/fmed.2024.1416319 IS - 11 PB - Frontiers ER - TY - INPR A1 - Förstl, Nikolas A1 - Adler, Ina A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Technologies for Evaluation of Pelvic Floor Functionality: A Systematic Review N2 - Pelvic floor dysfunction is a common problem in women and has a negative impact ontheir quality of life. The aim of this review was to provide a general overview of the current state oftechnology used to assess pelvic floor functionality. It also provides literature research of the phys-iological and anatomical factors that correlate with pelvic floor health. The systematic review wasconducted according to the PRISMA guidelines. PubMed, ScienceDirect, Cochrane Library andIEEE databases were searched for publications on sensor technology for the assessment of pelvicfloor functionality. Anatomical and physiological parameters were identified through a manualsearch. In the systematic review 115 publications were included. 12 different sensor technologieswere identified. Information on the obtained parameters, sensor position, test activities and subjectcharacteristics were prepared in tabular form from each publication. 16 anatomical and physiologi- cal parameters influencing pelvic floor health were identified in 17 published studies and rankedfor their statistical significance. Taken together, this review could serve as a basis for the develop-ment of novel sensors which could allow for quantifiable prevention and diagnosis, as well as par-ticularized documentation of rehabilitation processes related to pelvic floor dysfunctions. KW - pelvic floor KW - sensors KW - functionality KW - influence parameters Y1 - 2024 U6 - https://doi.org/10.31219/osf.io/dcqyg N1 - Der Aufsatz wurde peer-reviewd veröffentlich und ist ebenfalls in diesem Repositorium verzeichnet unter: https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/7321 PB - Center for Open Science ER - TY - JOUR A1 - Auer, Simon A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Using markerless motion capture and musculoskeletal models: An evaluation of joint kinematics JF - Technology and Health Care N2 - BACKGROUND: This study presents a comprehensive comparison between a marker-based motion capture system (MMC) and a video-based motion capture system (VMC) in the context of kinematic analysis using musculoskeletal models. OBJECTIVE: Focusing on joint angles, the study aimed to evaluate the accuracy of VMC as a viable alternative for biomechanical research. METHODS: Eighteen healthy subjects performed isolated movements with 17 joint degrees of freedom, and their kinematic data were collected using both an MMC and a VMC setup. The kinematic data were entered into the AnyBody Modelling System, which enables the calculation of joint angles. The mean absolute error (MAE) was calculated to quantify the deviations between the two systems. RESULTS: The results showed good agreement between VMC and MMC at several joint angles. In particular, the shoulder, hip and knee joints showed small deviations in kinematics with MAE values of 4.8∘, 6.8∘ and 3.5∘, respectively. However, the study revealed problems in tracking hand and elbow movements, resulting in higher MAE values of 13.7∘ and 27.7∘. Deviations were also higher for head and thoracic movements. CONCLUSION: Overall, VMC showed promising results for lower body and shoulder kinematics. However, the tracking of the wrist and pelvis still needs to be refined. The research results provide a basis for further investigations that promote the fusion of VMC and musculoskeletal models. KW - biomechanics KW - range of motion KW - musculoskeletal system KW - optical motion capture Y1 - 2024 U6 - https://doi.org/10.3233/THC-240202 SN - 0928-7329 N1 - Corresponding author der OTH Regensburg: Sebastian Dendorfer SP - 1 EP - 10 PB - IOS Press ER - TY - JOUR A1 - Förstl, Nikolas A1 - Adler, Ina A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Technologies for Evaluation of Pelvic Floor Functionality: A Systematic Review JF - Sensors N2 - Pelvic floor dysfunction is a common problem in women and has a negative impact on their quality of life. The aim of this review was to provide a general overview of the current state of technology used to assess pelvic floor functionality. It also provides literature research of the physiological and anatomical factors that correlate with pelvic floor health. This systematic review was conducted according to the PRISMA guidelines. The PubMed, ScienceDirect, Cochrane Library, and IEEE databases were searched for publications on sensor technology for the assessment of pelvic floor functionality. Anatomical and physiological parameters were identified through a manual search. In the systematic review, 114 publications were included. Twelve different sensor technologies were identified. Information on the obtained parameters, sensor position, test activities, and subject characteristics was prepared in tabular form from each publication. A total of 16 anatomical and physiological parameters influencing pelvic floor health were identified in 17 published studies and ranked for their statistical significance. Taken together, this review could serve as a basis for the development of novel sensors which could allow for quantifiable prevention and diagnosis, as well as particularized documentation of rehabilitation processes related to pelvic floor dysfunctions. Y1 - 2024 U6 - https://doi.org/10.3390/s24124001 N1 - Die Preprint-Version ist ebenfalls in diesem Repositorium verzeichnet unter: https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/7306 VL - 24 IS - 12 PB - MDPI ER - TY - GEN A1 - Dendorfer, Sebastian T1 - Diagnostische Genauigkeit und klinische Anwendungen tragbarer Bewegungssensoren für die Kniegelenksrehabilitation Y1 - 2024 CY - Nürnberg ER - TY - JOUR A1 - Mühling, Mischa A1 - Sandriesser, Sabrina A1 - Dendorfer, Sebastian A1 - Augat, Peter T1 - Assessment of implant internal stresses under physiological femoral loading: Translation to a simplified bending load model JF - Journal of Biomechanics N2 - The success of surgical treatment for fractures hinges on various factors, notably accurate surgical indication. The process of developing and certifying a new osteosynthesis device is a lengthy and costly process that requires multiple cycles of review and validation. Current methods, however, often rely on predecessor standards rather than physiological loads in specific anatomical locations. This study aimed to determine actual loads experienced by an osteosynthesis plate, exemplified by a standard locking plate for the femoral shaft, utilizing finite elements analysis (FEA) and to obtain the bending moments for implant development standard tests. A protocol was developed, involving the creation and validation of a fractured femur model fixed with a locking plate, mechanical testing, and FEA. The model’s validation demonstrated exceptional accuracy in predicting deformations, and the FEA revealed peak stresses in the fracture bridging zone. Results of a parametric analysis indicate that larger fracture gaps significantly impact implant mechanical behavior, potentially compromising stability. This study underscores the critical need for realistic physiological conditions in implant evaluations, providing an innovative translational approach to identify internal loads and optimize implant designs. In conclusion, this research contributes to enhancing the understanding of implant performance under physiological conditions, promoting improved designs and evaluations in fracture treatments. KW - bone biomechanics KW - finite elements analysis KW - femoral fracture KW - Euler-Bernoulli-Beam-Theory KW - simplified loading model Y1 - 2024 U6 - https://doi.org/10.1016/j.jbiomech.2024.112229 SN - 1873-2380 IS - 112229 PB - Elsevier ER -