TY - JOUR A1 - Schaeffer, Leon A1 - Herrmann, David A1 - Schratzenstaller, Thomas A1 - Dendorfer, Sebastian A1 - Böhm, Valter T1 - Preliminary theoretical considerations on the stiffness characteristics of a tensegrity joint for the use in dynamic orthoses JF - Journal of Medical Robotics Research N2 - Early motion therapy plays an important role for effective long-term healing of joint injuries. In many cases, conventional dynamic orthoses fail to address the intricate movement possibilities of the underlying joints, limited by their simplistic joint representations, often represented by revolute joints, enabling rotations by only one axis. In this paper, a two-dimensional compliant tensegrity joint for use in biomedical applications is investigated. It consists of two compressed members and five compliant tensioned members. Relative movement possibilities are realized by the intrinsic compliance of the structure. In the development of these systems, the first step is the determination of the static stable equilibrium. This analysis is conducted in this paper by considering the potential energy approach or by using the geometric nonlinear finite element method. The mechanical behavior of the structure is assessed with a specific emphasis on its mechanical compliance. The primary objective of this study is the investigation of the influence of structural parameters on the overall stiffness and movability of the structure. The results underscore the significant effect of member parameters on the stiffness and movability of the compliant tensegrity joint, particularly under varying load magnitudes. These findings provide insights for optimizing the joint’s performance, contributing to its potential application in advanced orthotic and exoskeleton devices. KW - mechanical compliance KW - flexibility ellipsis KW - form-finding KW - tensegrity joint Y1 - 2023 U6 - https://doi.org/10.1142/S2424905X23400081 PB - World Scientific ER - TY - JOUR A1 - Schecklmann, Martin A1 - Schmausser, Maximilian A1 - Klinger, Felix A1 - Kreuzer, Peter M. A1 - Krenkel, Lars A1 - Langguth, Berthold T1 - Resting motor threshold and magnetic field output of the figure-of-8 and the double-cone coil JF - scientific reports N2 - The use of the double-cone (DC) coil in transcranial magnetic stimulation (TMS) is promoted with the notion that the DC coil enables stimulation of deeper brain areas in contrast to conventional figure-of-8 (Fo8) coils. However, systematic comparisons of these two coil types with respect to the spatial distribution of the magnetic field output and also to the induced activity in superficial and deeper brain areas are limited. Resting motor thresholds of the left and right first dorsal interosseous (FDI) and tibialis anterior (TA) were determined with the DC and the Fo8 coil in 17 healthy subjects. Coils were orientated over the corresponding motor area in an angle of 45 degrees for the hand area with the handle pointing in posterior direction and in medio-lateral direction for the leg area. Physical measurements were done with an automatic gantry table using a Gaussmeter. Resting motor threshold was higher for the leg area in contrast to the hand area and for the Fo8 in contrast to the DC coil. Muscle by coil interaction was also significant providing higher differences between leg and hand area for the Fo8 (about 27%) in contrast to the DC coil (about 15%). Magnetic field strength was higher for the DC coil in contrast to the Fo8 coil. The DC coil produces a higher magnetic field with higher depth of penetration than the figure of eight coil. KW - ANTERIOR CINGULATE CORTEX KW - CONNECTIVITY KW - Depression KW - FRONTAL-CORTEX KW - PREDICTOR KW - RTMS KW - STIMULATION KW - TMS Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-58034-2 VL - 10 IS - 1 PB - Nature ER - TY - JOUR A1 - Scheer, Clara A1 - Kubowitsch, Simone A1 - Dendorfer, Sebastian A1 - Jansen, Petra T1 - Happy Enough to Relax? How Positive and Negative Emotions Activate Different Muscular Regions in the Back - an Explorative Study JF - Frontiers in Psychology N2 - Embodiment theories have proposed a reciprocal relationship between emotional state and bodily reactions. Besides large body postures, recent studies have found emotions to affect rather subtle bodily expressions, such as slumped or upright sitting posture. This study investigated back muscle activity as an indication of an effect of positive and negative emotions on the sitting position. The electromyography (EMG) activity of six back muscles was recorded in 31 healthy subjects during exposure to positive and negative affective pictures. A resting period was used as a control condition. Increased muscle activity patterns in the back were found during the exposure to negative emotional stimuli, which was mainly measured in the lumbar and thorax regions. The positive emotion condition caused no elevated activity. The findings show that negative emotions lead to increased differential muscle activity in the back and thus corroborate those of previous research that emotion affects subtle bodily expressions. KW - electromyography KW - muscle activity KW - emotion KW - sadness KW - happiness KW - embodiment Y1 - 2021 U6 - https://doi.org/10.3389/fpsyg.2021.511746 SN - 1664-1078 VL - Volume 12 IS - May 2021 PB - Frontiers Media ER - TY - JOUR A1 - Schmidt, Ulf A1 - Penzkofer, Rainer A1 - Bachmaier, Samuel A1 - Augat, Peter T1 - Implant Material and Design Alter Construct Stiffness in Distal Femur Locking Plate Fixation: A Pilot Study JF - Clinical Orthopaedics and Related Research® N2 - BACKGROUND: Construct stiffness affects healing of bones fixed with locking plates. However, variable construct stiffness reported in the literature may be attributable to differing test configurations and direct comparisons may clarify these differences. QUESTIONS/PURPOSES: We therefore asked whether different distal femur locking plate systems and constructs will lead to different (1) axial and rotational stiffness and (2) fatigue under cyclic loading. METHODS: We investigated four plate systems for distal femur fixation (AxSOS, LCP, PERI-LOC, POLYAX) of differing designs and materials using bone substitutes in a distal femur fracture model (OTA/AO 33-A3). We created six constructs of each of the four plating systems. Stiffness under static and cyclic loading and fatigue under cyclic loading were measured. RESULTS: Mean construct stiffness under axial loading was highest for AxSOS (100.8 N/mm) followed by PERI-LOC (80.8 N/mm) and LCP (62.6 N/mm). POLYAX construct stiffness testing showed the lowest stiffness (51.7 N/mm) with 50% stiffness of AxSOS construct testing. Mean construct stiffness under torsional loading was similar in the group of AxSOS and PERI-LOC (3.40 Nm/degree versus 3.15 Nm/degree) and in the group of LCP and POLYAX (2.63 Nm/degree versus 2.56 Nm/degree). The fourth load level of > 75,000 cycles was reached by three of six AxSOS, three of six POLYAX, and two of six PERI-LOC constructs. All others including all LCP constructs failed earlier. CONCLUSIONS: Implant design and material of new-generation distal femur locking plate systems leads to a wide range of differences in construct stiffness. CLINICAL RELEVANCE: Assuming construct stiffness affects fracture healing, these data may influence surgical decision-making in choosing an implant system. Y1 - 2013 U6 - https://doi.org/10.1007/s11999-013-2867-0 VL - 471 IS - 9 SP - 2808 EP - 2814 PB - The Association of Bone and Joint Surgeons ER - TY - JOUR A1 - Schmitz, Paul A1 - Neumann, Christoph Cornelius A1 - Neumann, Carsten A1 - Nerlich, Michael A1 - Dendorfer, Sebastian T1 - Biomechanical analysis of iliac crest loading following cortico-cancellous bone harvesting JF - Journal of Orthopaedic Surgery and Research N2 - Background Iliac crest bone harvesting is a frequently performed surgical procedure widely used to treat bone defects. The objective of this study is to assess the biomechanical quantities related to risk for pelvic fracture after harvesting an autologous bone graft at the anterior iliac crest. Methods Finite element models with a simulated harvest site (sized 15 × 20 mm, 15 × 35 mm, 30 × 20 mm and 30 × 35 mm) in the iliac wing are created. The relevant loading case is when the ipsilateral leg is lifted off the ground. Musculoskeletal analysis is utilized to compute the muscle and joint forces involved in this motion. These forces are used as boundary conditions for the finite element analyses. Bone tissue stress is analyzed. Results Critical stress peaks are located between the anterior superior iliac spine (ASIS) and the anterior edge of the harvest site. Irrespective of the graft size, the iliac wing does not show any significant stress peaks with the harvest site being 20 to 25 mm posterior to the ASIS. The harvest area itself inhibits the distribution of the forces applied on the ASIS to extend to the posterior iliac wing. This leads to a lack of stress posterior to the harvest site. A balanced stress distribution with no stress peaks appears when the bone graft is taken below the iliac crest. Conclusion A harvest site located at least 20 to 25 mm posterior to the ASIS should be preferred to minimize the risk of iliac fatigue fracture. KW - Bone harvesting KW - Autologous bone graft KW - Iliac crest KW - Fatigue fracture KW - Pelvis KW - ASIS KW - FEA KW - Biomechanical investigation KW - Beckenkammknochen KW - Knochenentnahme KW - Spongiosa KW - Biomechanische Analyse Y1 - 2018 U6 - https://doi.org/10.1186/s13018-018-0822-1 VL - 13 IS - 108 SP - 1 EP - 8 PB - Springer Nature ER - TY - CHAP A1 - Seefried, C. A1 - Aurbach, Maximilian A1 - Wyss, C. A1 - Dendorfer, Sebastian T1 - Achilles tendon lengthening alters stresses in the growth plate T2 - International Conference BIOMDLORE, June 28 - 30 2018, Białystok, Poland Y1 - 2018 ER - TY - JOUR A1 - Sellmer, Andreas A1 - Stangl, Hubert A1 - Beyer, Mandy A1 - Grünstein, Elisabeth A1 - Leonhardt, Michel A1 - Pongratz, Herwig A1 - Eichhorn, Emerich A1 - Elz, Sigurd A1 - Striegl, Birgit A1 - Jenei-Lanzl, Zsuzsa A1 - Dove, Stefan A1 - Straub, Rainer H. A1 - Krämer, Oliver H. A1 - Mahboobi, Siavosh T1 - Marbostat-100 Defines a New Class of Potent and Selective Antiinflammatory and Antirheumatic Histone Deacetylase 6 Inhibitors JF - Journal of medicinal chemistry N2 - Epigenetic modifiers of the histone deacetylase (HDAC) family contribute to autoimmunity, cancer, HIV infection, inflammation, and neurodegeneration. Hence, histone deacetylase inhibitors (HDACi), which alter protein acetylation, gene expression patterns, and cell fate decisions, represent promising new drugs for the therapy of these diseases. Whereas pan-HDACi inhibit all 11 Zn2+-dependent histone deacetylases (HDACs) and cause a broad spectrum of side effects, specific inhibitors of histone deacetylase 6 (HDAC6i) are supposed to have less side effects. We present the synthesis and biological evaluation of Marbostats, novel HDAC6i that contain the hydroxamic acid moiety linked to tetrahydro-β-carboline derivatives. Our lead compound Marbostat-100 is a more potent and more selective HDAC6i than previously established well-characterized compounds in vitro as well as in cells. Moreover, Marbostat-100 is well tolerated by mice and effective against collagen type II induced arthritis. Thus, Marbostat-100 represents a most selective known HDAC6i and the possibility for clinical evaluation of a HDAC isoform-specific drug. KW - Animals KW - anti-Inflammatory agent KW - chemical synthesis KW - pharmacology KW - therapeutic use KW - toxicity Y1 - 2018 U6 - https://doi.org/10.1021/acs.jmedchem.7b01593 VL - 61 IS - 8 SP - 3454 EP - 3477 PB - ACS Publications ER - TY - CHAP A1 - Siegl, Marco A1 - Rieger, David A1 - Kovárík, Tomáš A1 - Ehrlich, Ingo T1 - Long-Term Behavior of Thermoplastics under UV Light tested by a self-build Device T2 - 3. OTH-Clusterkonferenz, 13. April 2018, Weiden, Tagungsband; Festschrift, 5 Jahre OTH-Verbund N2 - This article presents first results of artificial aging experi-ments by ultraviolet (UV) irradiation on thermoplasticmaterials conducted as an intent of the research project Thermoplastic Composite Structures (TheCoS) in colla-boration of the Ostbayerische Technische Hochschule(OTH) Regensburg and the University of West Bohemia(UWB) in Pilsen as part of a cross-border cooperation. In technical applications, thermoplastic materials are oftenaffected by aging and a related deterioration of the mechanical properties. Therefore, it is necessary to identifythe aging behavior of thermoplastic materials. For this,experiments were performed for three thermoplasticmaterials, namely polypropylene (PP), ultra high mole -cular weight polyethylene (UHMWPE) and high impactstrength polystyrene (HIPS). For these experiments, a UV chamber was constructed according to the internationalstandard EN ISO 4892-3 for simulation of exposurebehind window glass. The results are evaluated by testing the flexural strength and the dynamic mechanicalresponse after a selected period of time under UV lightand then compared to untreated test specimens. Y1 - 2018 UR - https://www.oth-regensburg.de/fileadmin/media/forschung/Dateien_2018/Clusterkonferenz-Tagungsband-2018.pdf SP - 118 EP - 122 ER - TY - GEN A1 - Singh, Max Diamond T1 - MDR Implementation Status and Lessons Learned from the Past Months: A Notified Body Perspective T2 - Cambridge Healthtech Institute's 2nd Annual Medical Device Clinical Trial Design and Operations: Trial Design and Technology to Optimize Medical Device Trials, Orlando, Florida + Virtual, 02.-03.03.2021 Y1 - PB - Cambridge Innovation Institute ER - TY - GEN A1 - Singh, Max Diamond T1 - MDR implementation status & lessons learned BT - MDR-Audtis – Best Practive & Learning, Tuttlingen, 10.02.2021 Y1 - 2021 ER -