TY - JOUR A1 - Hoenicka, Markus A1 - Kaspar, Marcel A1 - Schmid, Christof A1 - Liebold, Andreas A1 - Schrammel, Siegfried T1 - Contact-free monitoring of vessel graft stiffness - proof of concept as a tool for vascular tissue engineering JF - Journal of tissue engineering and regenerative medicine N2 - Tissue-engineered vessel grafts have to mimic the biomechanical properties of native blood vessels. Manufacturing processes often condition grafts to adapt them to the target flow conditions. Graft stiffness is influenced by material properties and dimensions and determines graft compliance. This proof-of-concept study evaluated a contact-free method to monitor biomechanical properties without compromising sterility. Forced vibration response analysis was performed on human umbilical vein (HUV) segments mounted in a buffer-filled tubing system. A linear motor and a dynamic signal analyser were used to excite the fluid by white noise (0-200 Hz). Vein responses were read out by laser triangulation and analysed by fast Fourier transformation. Modal analysis was performed by monitoring multiple positions of the vessel surface. As an inverse model of graft stiffening during conditioning, HUV were digested proteolytically, and the course of natural frequencies (NFs) was monitored over 120 min. Human umbilical vein showed up to five modes with NFs in the range of 5-100 Hz. The first natural frequencies of HUV did not alter over time while incubated in buffer (p = 0.555), whereas both collagenase (-35%, p = 0.0061) and elastase (-45%, p < 0.001) treatments caused significant decreases of NF within 120 min. Decellularized HUV showed similar results, indicating that changes of the extracellular matrix were responsible for the observed shift in NF. Performing vibration response analysis on vessel grafts is feasible without compromising sterility or integrity of the samples. This technique allows direct measurement of stiffness as an important biomechanical property, obviating the need to monitor surrogate parameters. Copyright (C) 2016 John Wiley & Sons, Ltd. KW - ANEURYSMS KW - ARTERIES KW - Biomechanics KW - BIOREACTOR KW - BLOOD-VESSELS KW - BYPASS GRAFTS KW - CONSTRUCTS KW - design KW - extracellular matrix KW - human umbilical vein KW - IN-VITRO KW - MECHANICAL-PROPERTIES KW - proteolysis KW - small calibre graft KW - vascular tissue engineering Y1 - 2017 U6 - https://doi.org/10.1002/term.2186 VL - 11 IS - 10 SP - 2828 EP - 2835 PB - Wiley ER - TY - JOUR A1 - Hornberger, Helga A1 - Striegl, Birgit A1 - Trahanofsky, M. A1 - Kneissl, F. A1 - Kronseder, Matthias T1 - Degradation and bioactivity studies of Mg membranes for dental surgery JF - Materials Letter X N2 - Bioresorbable materials are under investigation due to their promising properties for applications as implant material. This study is about the degradation and bioactivity behaviour of magnesium foils, which allegorize dental membranes. The degradation behaviour including pitting corrosion during immersion tests can be precisely observed using micro-computed tomography. Using the bioactivity test according to Kokubo, it is shown that magnesium has strong Ca-phosphate layer formation correlated with high degradation. Therefore, magnesium foils appear to hold a great potential for bone implant application. KW - Magnesium KW - Dental membrane KW - Bioactivity KW - Corrosion rate Y1 - 2019 U6 - https://doi.org/10.1016/j.mlblux.2019.100007 VL - 2 IS - June SP - 1 EP - 5 PB - Elsevier ER - TY - CHAP A1 - Horner, Marc A1 - Dendorfer, Sebastian A1 - Kiis, Arne A1 - Lawrenchuk, Mike A1 - Verma, Gunjan T1 - A Patient based simulation workflow for orthopedic device design and analysis T2 - SBC Ortho Workshop, June 2011 Y1 - 2011 ER - TY - JOUR A1 - Hölscher, Thomas A1 - Weber, Tim A. A1 - Lazarev, Igor A1 - Englert, Carsten A1 - Dendorfer, Sebastian T1 - The influence of rotator cuff tears on glenohumeral stability during abduction tasks JF - Journal of Orthopaedic Research N2 - One of the main goals in reconstructing rotator cuff tears is the restoration of glenohumeral joint stability, which is subsequently of utmost importance in order to prevent degenerative damage such as superior labral anterior posterior (SLAP) lesion, arthrosis, and malfunction. The goal of the current study was to facilitate musculoskeletal models in order to estimate glenohumeral instability introduced by muscle weakness due to cuff lesions. Inverse dynamics simulations were used to compute joint reaction forces for several static abduction tasks with different muscle weakness. Results were compared with the existing literature in order to ensure the model validity. Further arm positions taken from activities of daily living, requiring the rotator cuff muscles were modeled and their contribution to joint kinetics computed. Weakness of the superior rotator cuff muscles (supraspinatus; infraspinatus) leads to a deviation of the joint reaction force to the cranial dorsal rim of the glenoid. Massive rotator cuff defects showed higher potential for glenohumeral instability in contrast to single muscle ruptures. The teres minor muscle seems to substitute lost joint torque during several simulated muscle tears to maintain joint stability. Joint instability increases with cuff tear size. Weakness of the upper part of the rotator cuff leads to a joint reaction force closer to the upper glenoid rim. This indicates the comorbidity of cuff tears with SLAP lesions. The teres minor is crucial for maintaining joint stability in case of massive cuff defects and should be uprated in clinical decision-making. KW - Abduction tasks KW - Glenohumeral stability KW - Musculoskeletal Modeling KW - Muscle weakness KW - Rotator cuff tears KW - Rotatorenmanschettenriss KW - Schultergelenk KW - Stabilität Y1 - 2016 U6 - https://doi.org/10.1002/jor.23161 VL - 34 IS - 9 SP - 1628 EP - 1635 ER - TY - JOUR A1 - Ignasiak, Dominika A1 - Dendorfer, Sebastian A1 - Ferguson, Stephen J. T1 - Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading JF - Journal of Biomechanics N2 - Musculoskeletal modeling offers an invaluable insight into the spine biomechanics. A better understanding of thoracic spine kinetics is essential for understanding disease processes and developing new prevention and treatment methods. Current models of the thoracic region are not designed for segmental load estimation, or do not include the complex construct of the ribcage, despite its potentially important role in load transmission. In this paper, we describe a numerical musculoskeletal model of the thoracolumbar spine with articulated ribcage, modeled as a system of individual vertebral segments, elastic elements and thoracic muscles, based on a previously established lumbar spine model and data from the literature. The inverse dynamics simulations of the model allow the prediction of spinal loading as well as costal joints kinetics and kinematics. The intradiscal pressure predicted by the model correlated well (R2=0.89) with reported intradiscal pressure measurements, providing a first validation of the model. The inclusion of the ribcage did not affect segmental force predictions when the thoracic spine did not perform motion. During thoracic motion tasks, the ribcage had an important influence on the predicted compressive forces and muscle activation patterns. The compressive forces were reduced by up to 32%, or distributed more evenly between thoracic vertebrae, when compared to the predictions of the model without ribcage, for mild thoracic flexion and hyperextension tasks, respectively. The presented musculoskeletal model provides a tool for investigating thoracic spine loading and load sharing between vertebral column and ribcage during dynamic activities. Further validation for specific applications is still necessary. KW - Inverse dynamics KW - Musculoskeletal model KW - Thoracolumbar spine KW - Brustwirbelsäule KW - Brustkorb KW - Biomechanik KW - Mechanische Belastung KW - Prognose Y1 - 2016 U6 - https://doi.org/10.1016/j.jbiomech.2015.10.010 VL - vol. 49 IS - 6 SP - 959 EP - 966 PB - Elsevier Science ER - TY - CHAP A1 - Ignasiak, Dominika A1 - Dendorfer, Sebastian A1 - Ferguson, Stephen J. T1 - Thoracolumbar spine model with articulated rigcage for the prediction of dynamic spinal loading T2 - International Workshop on Spine Loading and Deformation: From Loading to Recovery, 2-4 July 2015, Julius Wolff Institute, Charité-Universitatsmedizin Berlin, Germany Y1 - 2015 ER - TY - CHAP A1 - Jungtäubl, Dominik A1 - Aurbach, Maximilian A1 - Melzner, Maximilian A1 - Spicka, Jan A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - EMG-Based Validation of Musculoskeletal Models Considering Crosstalk T2 - International Conference BIOMDLORE, June 28 - 30 2018, Białystok, Poland N2 - BACKGROUND: Validation and verification of multibody musculoskeletal models sEMG is a difficult process because of the reliability of sEMG data and the complex relationship of muscle force and sEMG. OBJECTIVE: This work aims at comparing experimentally recorded and simulated muscle activities considering a numerical model for crosstalk. METHODS: For providing an experimentally derived reference data set, subjects were performing elevations of the arm, where the activities of the contemplated muscle groups were measured by sEMG sensors. Computed muscle activities were further processed and transformed into an artificial electromyographical signal, which includes a numerical crosstalk model. In order to determine whether the crosstalk model provides a better agreement with the measured muscle activities, the Pearson correlation coefficient has been computed as a qualitative way of assessing the curve progression of the data sets. RESULTS: The results show an improvement in the correlation coefficient between the experimental data and the simulated muscle activities when taking crosstalk into account. CONCLUSIONS: Although the correlation coefficient increased when the crosstalk model was utilized, it is questionable if the discretization of both, the crosstalk and the musculoskeletal model, is accurate enough. KW - musculoskeletal modeling KW - validation KW - surface electromyography KW - crosstalk Y1 - 2018 U6 - https://doi.org/10.1109/BIOMDLORE.2018.8467211 ER - TY - CHAP A1 - Jungtäubl, Dominik A1 - Schmitz, Paul A1 - Gross, Simon A1 - Dendorfer, Sebastian ED - Badnjevic, Almir T1 - FEA of the transiliacal internal fixator as an osteosynthesis of pelvic ring fractures T2 - CMBEBIH 2017, Proceedings of the International Conference on Medical and Biological Engineering 2017 N2 - Common Schanz screw systems can be used to stabilize pelvic ring fractures. In order to accommodate for different patient’s requirements, implants can be placed in cranio-caudal direction into the os ilium (T1), or into the supraacetabular bone canal, and thus, in dorso-ventral direction (T2). Whereas both techniques are currently used, no data of the biomechanical behavior is available up to this date. The aim of this study is to analyze, whether T2 shows biomechanical advantages with respect to tissue and implant stresses due to the enlarged bone-implant interface. Forces acting on the pelvis were analyzed using motion capture data of a gait cycle obtained by the utilization of a musculoskeletal simulation program. A three dimensional finite element (FE) model of the pelvis with grayscale-based material properties was generated. The muscle and joint reaction forces at toe-off were applied to the FE model and instable pelvis fractures were implemented. The osteosynthesis systems were positioned within the model in order to enable the comparison between the two different surgical techniques. Stresses and displacements were analyzed for bone tissue, fracture zone and implant. T2 lead to approx. 30% larger displacements in the fracture zone. Von-Mises stresses were larger for T2 in the implant (80 MPa vs. 227 MPa), whereas T1 leads to larger stresses in the bone tissue (200 MPa vs. 140 MPa). Both implantation techniques showed a good biomechanical behavior. Differences could be found with respect to tissue strains and deformations in the fracture zone. If bone quality or fracture healing are of concern, T2 or T1 should be used, respectively. However, both techniques seem to be applicable for cases with no special requirements. Further analyses aim to investigate the behavior under cyclic loading. KW - Finite element analysis KW - Musculoskeletal simulation KW - Internal fixator KW - Pelvic ring fracture KW - Beckenbruch KW - Operationstechnik KW - Finite-Elemente-Methode KW - Biomechanik KW - Simulation Y1 - 2017 SN - 978-981-10-4165-5 U6 - https://doi.org/10.1007/978-981-10-4166-2_32 SP - 212 EP - 217 PB - Springer CY - Singapore ER - TY - JOUR A1 - Kheiroddin, Parastoo A1 - Schöberl, Patricia A1 - Althammer, Michael A1 - Cibali, Ezgi A1 - Würfel, Thea A1 - Wein, Hannah A1 - Kulawik, Birgit A1 - Buntrock-Döpke, Heike A1 - Weigl, Eva A1 - Gran, Silvia A1 - Gründl, Magdalena A1 - Langguth, Jana A1 - Lampl, Benedikt A1 - Judex, Guido A1 - Niggel, Jakob A1 - Pagel, Philipp A1 - Schratzenstaller, Thomas A1 - Schneider-Brachert, Wulf A1 - Gastiger, Susanne A1 - Bodenschatz, Mona A1 - Konrad, Maike A1 - Levchuk, Artem A1 - Roth, Cornelius A1 - Schöner, David A1 - Schneebauer, Florian A1 - Rohrmanstorfer, René A1 - Burkovski, Andreas A1 - Ambrosch, Andreas A1 - Wagner, Thomas A1 - Kabesch, Michael ED - Buonsenso, Danilo T1 - Results of WICOVIR Gargle Pool PCR Testing in German Schools Based on the First 100,000 Tests JF - Frontiers in Pediatrics N2 - Background: Opening schools and keeping children safe from SARS-CoV-2 infections at the same time is urgently needed to protect children from direct and indirect consequences of the COVID-19 pandemic. To achieve this goal, a safe, efficient, and cost-effective SARS-CoV-2 testing system for schools in addition to standard hygiene measures is necessary. Methods: We implemented the screening WICOVIR concept for schools in the southeast of Germany, which is based on gargling at home, pooling of samples in schools, and assessment of SARS-CoV-2 by pool rRT-PCR, performed decentralized in numerous participating laboratories. Depooling was performed if pools were positive, and results were transmitted with software specifically developed for the project within a day. Here, we report the results after the first 13 weeks in the project. Findings: We developed and implemented the proof-of-concept test system within a pilot phase of 7 weeks based on almost 17,000 participants. After 6 weeks in the main phase of the project, we performed >100,000 tests in total, analyzed in 7,896 pools, identifying 19 cases in >100 participating schools. On average, positive children showed an individual CT value of 31 when identified in the pools. Up to 30 samples were pooled (mean 13) in general, based on school classes and attached school staff. All three participating laboratories detected positive samples reliably with their previously established rRT-PCR standard protocols. When self-administered antigen tests were performed concomitantly in positive cases, only one of these eight tests was positive, and when antigen tests performed after positive pool rRT-PCR results were already known were included, 3 out of 11 truly positive tests were also identified by antigen testing. After 3 weeks of repetitive WICOVIR testing twice weekly, the detection rate of positive children in that cohort decreased significantly from 0.042 to 0.012 (p = 0.008). Interpretation: Repeated gargle pool rRT-PCR testing can be implemented quickly in schools. It is an effective, valid, and well-received test system for schools, superior to antigen tests in sensitivity, acceptance, and costs. KW - children KW - COVID-19 KW - Germany KW - PCR KW - pooling KW - gargle KW - schools KW - pandemic KW - Covid-19 KW - Polymerase-Kettenreaktion KW - Nachweis KW - Schulkind KW - Deutschland Y1 - 2021 U6 - https://doi.org/10.3389/fped.2021.721518 SN - 2296-2360 VL - 9 PB - frontiers ER - TY - GEN A1 - Krefting, Dagmar A1 - Zaunseder, Sebastian A1 - Säring, Dennis A1 - Wittenberg, Thomas A1 - Palm, Christoph A1 - Schiecke, Karin A1 - Krenkel, Lars A1 - Hennemuth, Anja A1 - Schnell, Susanne A1 - Spicher, Nicolai T1 - Blutdruck, Hämodynamik und Gefäßzustand: Innovative Erfassung und Bewertung – Schwerpunkt bildbasierte Verfahren T2 - 66. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e. V. (GMDS), 12. Jahreskongress der Technologie- und Methodenplattform für die vernetzte medizinische Forschung e. V. (TMF), 26. - 30.09.2021, online N2 - Einleitung: Blutdruck gilt als sogenannter Vitalparameter als einer der grundlegenden Indikatoren für den Gesundheitszustand einer Person. Sowohl zu niedriger als auch zu hoher Blutdruck kann lebensbedrohend sein, letzerer ist darüber hinaus ein Risikofaktor insbesondere für Herz-Kreislauferkrankungen, die trotz wichtiger Fortschritte in der Behandlung immer noch die häufigste Todesursache in Deutschland darstellen. Die Hämodynamik, also die raumzeitliche Dynamik des Blutflusses, und der Gefäßzustand sind eng verbunden mit dem Blutdruck und ebenfalls von hoher klinischer Relevanz, u.a. zur Identifikation von Durchblutungsstörungen und ungünstigen Druckverteilungen der Gefäßwand. Innovationen in der Messtechnik als auch in der Datenanalyse bieten heute neue Möglichkeiten der Erfassung und Bewertung von Blutdruck, Hämodynamik und Gefäßzustand [1], [2], [3], [4]. Methodik: In einer gemeinsamen Workshopserie der AG Medizinische Bild- und Signalverarbeitung der GMDS und des Fachausschusses Biosignale der DGBMT werden wir neue Ansätze und Lösungen für Mess- und Analyseverfahren zu Blutdruck und -fluss sowie zum Gefäßzustand vorstellen und diskutieren. Dabei stehen im ersten Workshop auf der GMDS Jahrestagung Bildbasierte Verfahren im Zentrum, während der zweite Workshop auf der DGBMT Jahrestagung den Fokus auf Biosignalbasierten Verfahren legt. Es werden aktuelle Forschungsergebnisse vorgestellt und diskutiert. Es sind jeweils mehrere Vorträge geplant mit ausreichend Zeit zur Diskussion. Folgende Vorträge sind geplant (Arbeitstitel): Sebastian Zaunseder: Videobasierte Erfassung des Blutdrucks Anja Hennemuth: A Visualization Toolkit for the Analysis of Aortic Anatomy and Pressure Distribution Lars Krenkel: Numerische Analyse der Rupturwahrscheinlichkeit zerebraler Aneurysmata Susanne Schnell: Messung des Blutflusses und hämodynamischer Parameter mit 4D flow MRI: Möglichkeiten und Herausforderungen Ergebnisse: Ziel des Workshops ist die Identifikation von innovativen Ansätzen und neuen Methoden zur qualitativen und quantitativen Bestimmung von hämodynamischen Parametern sowie deren kritische Bewertung durch die Community für die Eignung in der klinischen Entscheidungsunterstützung. Diskussion: Der Workshop leistet inhaltlich einen Beitrag zu zentralen Aspekten für die Herz-Kreislauf-Medizin. Er bringt dabei Expertise aus verschiedenen Bereichen zusammen und schlägt die Brücke zwischen Kardiologie, Medizininformatik und Medizintechnik. Schlussfolgerung: Innovative Technologien aus Medizintechnik und Informatik ermöglichen zunehmend einfache und raumzeitlich aufgelöste Erfassung und Bewertung wichtiger Informationen zur Unterstützung von Diagnose und Therapieverfolgung. [1] Zaunseder S, Trumpp A, Wedekind D, Malberg H. Cardiovascular assessment by imaging photoplethysmography - a review. Biomed Tech (Berl). 2018 Oct 25;63(5):617–34. [2] Huellebrand M, Messroghli D, Tautz L, Kuehne T, Hennemuth A. An extensible software platform for interdisciplinary cardiovascular imaging research. Comput Methods Programs Biomed. 2020 Feb;184:105277. [3] Schmitter S, Adriany G, Waks M, Moeller S, Aristova M, Vali A, et al. Bilateral Multiband 4D Flow MRI of the Carotid Arteries at 7T. Magn Reson Med. 2020 Oct;84(4):1947–60. [4] Birkenmaier C, and Krenkel, L. Flow in Artificial Lungs. In: New Results in Numerical and Experimental Fluid Mechanics XIII. Contributions to the 22nd STAB/DGLR Symposium. Springer; 2021. KW - Bildbasierte Verfahren KW - Blutdruck KW - Hämodynamik KW - Blutgefäß KW - Bildgebendes Verfahren Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0183-21gmds0167 ER -