TY - JOUR A1 - Romeis, Dirk A1 - Kostrov, Sergei A. A1 - Kramarenko, Elena Yu A1 - Stepanov, Gennady V. A1 - Shamonin (Chamonine), Mikhail A1 - Saphiannikova, M. T1 - Magnetic-field-induced stress in confined magnetoactive elastomers JF - Soft Matter N2 - We present a theoretical approach for calculating the state of stress induced by a uniform magnetic field in confined magnetoactive elastomers of arbitrary shape. The theory explicitly includes the magnetic field generated by magnetizable spherical inclusions in the sample interior assuming a non-linear magnetization behavior. The initial spatial distribution of particles and its change in an external magnetic field are considered. This is achieved by the introduction of an effective demagnetizing factor where both the sample shape and the material microstructure are taken into account. Theoretical predictions are fitted to the stress data measured using a specifically designed experimental setup. It is shown that the theory enables the quantification of the effect of material microstructure upon introducing a specific microstructural factor and its derivative with respect to the extensional strain in the undeformed state. The experimentally observed differences between isotropic and anisotropic samples, compliant and stiff elastomer matrices are explained. Y1 - 2020 U6 - https://doi.org/10.1039/D0SM01337D VL - 16 IS - 39 SP - 9047 EP - 9058 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Belyaeva, Inna A. A1 - Kramarenko, Elena Yu A1 - Shamonin (Chamonine), Mikhail T1 - Magnetodielectric effect in magnetoactive elastomers: Transient response and hysteresis JF - POLYMER N2 - Magnetodielectric properties of magnetoactive elastomers comprising micrometer-sized iron particles dispersed in compliant elastomer matrices are experimentally studied in stepwise time-varying dc magnetic fields. It is found that imposition of magnetic field significantly increases both the effective lossless permittivity of these composite materials as well as their effective conductivity. These magnetodielectric effects are more pronounced for larger concentrations of soft-magnetic filler particles and softer elastomer matrices. The largest observed relative change of the effective dielectric constant in the maximum magnetic field of 0.57 T is of the order of 1000%. The largest observed absolute change of the loss tangent is approximately 0.8. The transient response of the magnetodielectric effect to a step magnetic-field excitation can be rather complex. It changes from a simple monotonic growth with time for small magnetic-field steps (<0.1 T) to a non-monotonic behavior with a significant rapidly appearing overshoot for large magnetic-field steps (>0.3 T). The settling time to the magnetic-field step excitation can reach roughly 1000 s and it depends on the applied magnetic field and sample composition. There is also significant hysteresis of the magnetodielectric effect on the externally applied magnetic field. These findings are attributed to the rearrangement of ferromagnetic filler particles in external magnetic fields. The results will be useful for understanding and predicting the transient behavior of magnetoactive elastomers in applications where the control magnetic field is time dependent. (C) 2017 Elsevier Ltd. All rights reserved. KW - BEHAVIOR KW - composites KW - DIELECTRIC-PROPERTIES KW - hysteresis KW - MAGNETIC-FIELD KW - magnetoactive elastomer KW - magnetodielectric effect KW - Magnetorhelogical elastomer KW - MELT STATE KW - MICROSTRUCTURE KW - POLYMER DEGRADATION KW - PROGRESS KW - Smart material KW - THERMOOXIDATIVE DEGRADATION KW - TIME-RESOLVED RHEOLOGY KW - Transient response Y1 - 2017 U6 - https://doi.org/10.1016/j.polymer.2017.08.056 VL - 127 SP - 119 EP - 128 PB - ELSEVIER ER - TY - JOUR A1 - Sorokin, Vladislav V. A1 - Belyaeva, Inna A. A1 - Shamonin (Chamonine), Mikhail A1 - Kramarenko, Elena Yu T1 - Magnetorheological response of highly filled magnetoactive elastomers from perspective of mechanical energy density: Fractal aggregates above the nanometer scale? JF - Physical Review E N2 - The dynamic shear modulus of magnetoactive elastomers containing 70 and 80 mass % of carbonyl iron microparticles is measured as a function of strain amplitude via dynamic torsion oscillations in various magnetic fields. The results are presented in terms of the mechanical energy density and considered in the framework of the conventional Kraus model. The form exponent of the Kraus model is further related to a physical model of Huber et al. [Huber et al., J. Phys.: Condens. Matter 8, 409 (1996)] that uses a realistic representation for the cluster network possessing fractal structure. Two mechanical loading regimes are identified. At small strain amplitudes the exponent beta of the Kraus model changes in an externally applied magnetic field due to rearrangement of ferromagnetic-filler particles, while at large strain amplitudes, the exponent beta seems to be independent of the magnetic field. The critical mechanical energy characterizing the transition between these two regimes grows with the increasing magnetic field. Similarities between agglomeration and deagglomeration of magnetic filler under simultaneously applied magnetic field and mechanical shear and the concept of jamming transition are discussed. It is proposed that the magnetic field should be considered as an additional parameter to the jamming phase diagram of rubbers filled with magnetic particles. KW - BEHAVIOR KW - composites KW - hysteresis KW - MAGNETIC-FIELD KW - MODEL KW - RHEOLOGY KW - RUBBER KW - SENSITIVE ELASTOMERS KW - VISCOELASTIC PROPERTIES Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevE.95.062501 VL - 95 IS - 6 PB - Amer Physical Soc ER - TY - JOUR A1 - Dechant, Eduard A1 - Fedulov, Feodor A1 - Fetisov, Leonid Y. A1 - Shamonin (Chamonine), Mikhail T1 - Bandwidth Widening of Piezoelectric Cantilever Beam Arrays by Mass-Tip Tuning for Low-Frequency Vibration Energy Harvesting JF - Applied Science N2 - Wireless sensor networks usually rely on internal permanent or rechargeable batteries as a power supply, causing high maintenance efforts. An alternative solution is to supply the entire system by harvesting the ambient energy, for example, by transducing ambient vibrations into electric energy by virtue of the piezoelectric effect. The purpose of this paper is to present a simple engineering approach for the bandwidth optimization of vibration energy harvesting systems comprising multiple piezoelectric cantilevers (PECs). The frequency tuning of a particular cantilever is achieved by changing the tip mass. It is shown that the bandwidth enhancement by mass tuning is limited and requires several PECs with close resonance frequencies. At a fixed frequency detuning between subsequent PECs, the achievable bandwidth shows a saturation behavior as a function of the number of cantilevers used. Since the resonance frequency of each PEC is different, the output voltages at a particular excitation frequency have different amplitudes and phases. A simple power-transfer circuit where several PECs with an individual full wave bridge rectifier are connected in parallel allows one to extract the electrical power close to the theoretical maximum excluding the diode losses. The experiments performed on two- and three-PEC arrays show reasonable agreement with simulations and demonstrate that this power-transfer circuit additionally influences the frequency dependence of the harvested electrical power. KW - array KW - BAND-PASS FILTERS KW - bandwidth KW - BIMORPH KW - Optimization KW - OUTPUT KW - PERFORMANCE KW - piezoelectric cantilever KW - POWER KW - vibration energy harvesting Y1 - 2017 U6 - https://doi.org/10.3390/app7121324 N1 - Corresponding Author: Mikhail Shamonin VL - 7 IS - 12 PB - MDPI ER - TY - CHAP A1 - Sýkora, Miroslav A1 - Diamantidis, Dimitris A1 - Markova, J. A1 - Masciotta, Maria Giovanna ED - Baričević, Ana ED - Jelčić Rukavina, Marija ED - Damjanović, Domagoi ED - Guadagnini, Maurizio T1 - Optimizing in-situ testing for historic masonry structures: a case study BT - a case study T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) : Durability, Monitoring and Repair of Structures, 20-22 March 2019, Rovinj, Croatia Y1 - 2019 UR - http://toc.proceedings.com/50441webtoc.pdf SN - 978-1-5108-9296-5 SP - 684 EP - 691 PB - RILEM Publications ER - TY - JOUR A1 - Schwanzer, Peter A1 - Rabl, Hans-Peter A1 - Loders, S. A1 - Seifert, P. A1 - Himmelstoss, S. A1 - Gaderer, Matthias T1 - Difference in the Tailpipe Particle Number by Consideration of Sub-23-nm Particles for Different Injection Settings of a GDI Engine JF - Emission control science and technology N2 - The purpose of this study was to investigate the characteristic of nanoparticles under consideration of sub-23-nm particles from a 1.8-l direct injection (DI) gasoline engine under stoichiometric air/fuel conditions in the exhaust gas system. For future CO2 challenges, the usage of DI-instead of port fuel injection (PFI)-gasoline engines is unavoidable. Therefore, a state of the art particle management program-particle number (PN) system, the Horiba SPCS (2100) with an integrated CPC (condensation particle counter), was recalibrated from a 50% cutoff (D-50%) at 23 nm down to a cutoff at 10 nm and the PCRF (particle concentration reduction factor) for sizes smaller than 23 nm was checked. Two different modal points, out of a representative Real Driving Emission (RDE) cycle, were investigated with both calibrations, D-50%=10 nm and D-50%=23 nm. For these different load points, the fuel pressure (FUP) and the start of injection (SOI) were varied, to represent the difference in the structure and the ratio conc((10 nm))/conc((23 nm)) of the nanoparticle emissions. The particle characterization includes the particle number (PN), the particle size distribution (PSD), and the particle mass (PM). The particle number was measured with Horiba SPCS (2100). The particle size distribution was analyzed with a Grimm differential mobility analyzer (DMA) in combination with a Faraday cup electrometer (FCE). Micro Soot and Pegasor were used to determine the PM, and an optical characterization was done with a 120-kV Phillips CM12 transmission electron microscope (TEM). The position of all particle measurement systems was downstream the three-way catalyst (TWC). The results of this investigation showed that a higher injection pressure decreases the PN (without consideration of sub-23-nm particles) in general. The ratio conc((10 nm))/conc((23 nm)) was therefore higher, because smaller particles, especially ash particles, were less reduced from the FUP. This means higher FUP tends to a higher ratio. For the SOI, the main reasons of the ratio differences were explained by an encroachment between the injection jet and the piston, the valve and the wall. KW - DoE KW - GDI KW - Particle number Y1 - 2019 U6 - https://doi.org/10.1007/s40825-019-0114-1 VL - 5 IS - 1 SP - 7 EP - 22 PB - Springer Nature ER - TY - JOUR A1 - Kalita, Viktor M. A1 - Snarskii, Andrei A. A1 - Shamonin (Chamonine), Mikhail A1 - Zorinets, Denis T1 - Effect of single-particle magnetostriction on the shear modulus of compliant magnetoactive elastomers JF - Physical review E N2 - The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016)]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Pade approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles. KW - BEHAVIOR KW - composites KW - DEPENDENCE KW - FERROGELS KW - MECHANICAL-PROPERTIES KW - MICROSTRUCTURE KW - Polymer KW - PURE SHEAR KW - RHEOLOGY KW - SENSITIVE ELASTOMERS Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevE.95.032503 VL - 95 IS - 3 PB - American Physical Society ER - TY - GEN A1 - Altmann, Robert A1 - Rabl, Hans-Peter A1 - Gaderer, Matthias T1 - Phänomenologische Untersuchung des Einspritzverhaltens von Pflanzenölkraftstoff T2 - 3. Tagung der Fuels Joint Research Group (FJRG) "Kraftstoffe für die Mobilität von Morgen" Y1 - 2019 UR - https://www.researchgate.net/publication/335490299_Phanomenologische_Untersuchung_des_Einspritzverhaltens_von_Pflanzenolkraftstoff ER - TY - GEN A1 - Altmann, Robert A1 - Gaderer, Matthias A1 - Rabl, Hans-Peter T1 - Prüfstandsuntersuchungen an einem DEUTZ NRMM Motor mit Rapsölkraftstoff und Optimierung des Betriebs- und Emissionsverhaltens durch statistische Versuchsplanung T2 - 18. Internationaler Fachkongress "Kraftstoffe der Zukunft 2021" - digital & international vernetzt!, online Y1 - 2021 ER - TY - JOUR A1 - Walter, Stefanie A1 - Schwanzer, Peter A1 - Steiner, Carsten A1 - Hagen, Gunter A1 - Rabl, Hans-Peter A1 - Dietrich, Markus A1 - Moos, Ralf T1 - Mixing Rules for an Exact Determination of the Dielectric Properties of Engine Soot Using the Microwave Cavity Perturbation Method and Its Application in Gasoline Particulate Filters JF - Sensors N2 - In recent years, particulate filters have become mandatory in almost all gasoline-powered vehicles to comply with emission standards regarding particulate number. In contrast to diesel applications, monitoring gasoline particulate filters (GPFs) by differential pressure sensors is challenging due to lower soot masses to be deposited in the GPFs. A different approach to determine the soot loading of GPFs is a radio frequency-based sensor (RF sensor). To facilitate sensor development, in previous work, a simulation model was created to determine the RF signal at arbitrary engine operating points. To ensure accuracy, the exact dielectric properties of the soot need to be known. This work has shown how small samples of soot-loaded filter are sufficient to determine the dielectric properties of soot itself using the microwave cavity perturbation method. For this purpose, mixing rules were determined through simulation and measurement, allowing the air and substrate fraction of the sample to be considered. Due to the different geometry of filter substrates compared to crushed soot samples, a different mixing rule had to be derived to calculate the effective filter properties required for the simulation model. The accuracy of the determined mixing rules and the underlying simulation model could be verified by comparative measurements on an engine test bench. KW - mixing rule KW - dielectric properties KW - microwave cavity perturbation KW - finite element method (FEM) KW - soot mass determination KW - radio-frequency (RF) KW - gasoline particulate filter (GPF) Y1 - 2022 U6 - https://doi.org/10.3390/s22093311 VL - 22 IS - 9 SP - 1 EP - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mikhaeil, Makram A1 - Gaderer, Matthias A1 - Dawoud, Belal T1 - Experimental Investigation of the Adsorption and Desorption Kinetics on an Open-Structured Asymmetric Plate Heat Exchanger; Matching Between Small-Scale and Full-Scale Results JF - Frontiers in Energy Research N2 - This paper introduces the results of an experimental study on the adsorption and desorption kinetics of a commercially available, open-structured asymmetric plate heat exchanger adapted to act as an adsorber/desorber for the application in adsorption heat transformation processes. In addition, a volumetric large temperature jump (V-LTJ) kinetic setup was applied to measure the adsorption and desorption kinetics of a small-scale adsorbent sample prepared dedicatedly to be representative for the adsorbent domain inside the investigated adsorber plate heat exchanger (APHE). All kinetic results of the small-scale adsorbent sample and the APHE were fitted into exponential forms with a single characteristic time constant (τ) with a coefficient of determination (R2) better than 0.9531. A very good matching between the small-scale and full-scale adsorption kinetic measurements was obtained, with an average relative deviation of 12.3% in the obtained τ-values. In addition, the kinetic data of the small-scale adsorbent sample were utilized for estimating the expected specific instantaneous and moving average powers of the evaporator/condenser heat exchanger. The average relative deviation (ARD) between the moving average specific evaporator powers obtained from the small-scale and the full-scale measurements amounts between 5.4 and 15.1%. Y1 - 2022 U6 - https://doi.org/10.3389/fenrg.2022.818486 N1 - Corresponding author: Belal Dawoud VL - 10 SP - 1 EP - 15 PB - Frontiers ER - TY - JOUR A1 - Steininger, Peter A1 - Gaderer, Matthias A1 - Dawoud, Belal T1 - Assessment of the Annual Transmission Heat Loss Reduction of a Refurbished Existing Building with an Advanced Solar Selective Thermal Insulation System JF - Sustainability N2 - A numerical parameter sensitivity analysis of the design parameters of the recently published solar selective thermal insulation system (SATIS) has been carried out to enhance its thermal and optical properties. It turned out that the insulation properties of SATIS can be effectively improved by reducing the length of the glass closure element. Increasing the area share of the light conducting elements (LCEs) and decreasing their length-to-diameter (L/D) ratio were identified as key parameters in order to increase the solar gain. Two SATIS variants were compared with the same wall insulation without SATIS in a yearly energetic performance assessment. The SATIS variant with 10 mm length of the closure element, 44.2% area share of LCE, as well as front and rear diameters of 12 mm/9 mm shows an 11.8% lower transmission heat loss over the heating period than the wall insulation without SATIS. A new methodology was developed to enable the implementation of the computed solar gains of SATIS in 1D simulation tools. The result is a radiant heat flow map for integration as a heat source in 1D simulation models. A comparison between the 1D and 3D models of the inside wall heat fluxes showed an integral yearly agreement of 98%. KW - effective thermal conductivity KW - parameter sensitivity analysis KW - radiant heat flow map KW - solar selective thermal insulation system (SATIS) KW - total solar energy transmittance KW - yearly energetic performance assessment Y1 - 2021 U6 - https://doi.org/10.3390/su13137336 N1 - Corresponding author: Belal Dawoud VL - 13 IS - 13 SP - 1 EP - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Saveliev, Dmitry A1 - Fetisov, Leonid Y. A1 - Chashin, Dmitri V. A1 - Fetisov, Yuri K. A1 - Khon, Anastasia A1 - Shamonin (Chamonine), Mikhail T1 - Effects of ferromagnetic-material thickness on magnetoelectric voltage transformation in a multiferroic heterostructure JF - Smart Materials and Structures N2 - A magnetoelectric (ME) voltage transformer is fabricated on the basis of a ferromagnetic (FM)-piezoelectric (PE) heterostructure comprising two equally thick laminated layers of an amorphous FM alloy and a piezoceramic lead zirconate-titanate layer sandwiched between them. The structure, placed inside an excitation coil, is electrically poled and magnetized in the direction of the long axis. The primary voltage is applied to the coil and the secondary voltage is measured between the electrodes of the PE material. It is shown for the first time that the change in the total thickness of magnetic layers significantly influences the transformer ' s characteristics. At the largest total thickness of FM layers of 138 mu m, the open-circuit voltage transformation ratio K has a maximum value of about 20, and the power transfer efficiency eta at a matched resistive load of about 20 k omega reaches 45%. The variation of the control magnetic field in the range of 0-21.6 kA m(-1) makes it possible to change the voltage transformation ratio K from zero to the maximum value. A simple model allows one to calculate the dependence of the characteristics of the ME transformer on the frequency of the primary voltage, thickness of the FM layers, control magnetic field, and the load. KW - magnetoelectric effect KW - magnetostriction KW - multiferroic heterostructure KW - piezoelectric effect KW - voltage transformer Y1 - 2021 U6 - https://doi.org/10.1088/1361-665X/abf6c0 VL - 30 IS - 6 PB - IOP PUBLISHING ER - TY - JOUR A1 - Vérez, David A1 - Borri, Emiliano A1 - Crespo, Alicia A1 - Zsembinszki, Gabriel A1 - Dawoud, Belal A1 - Cabeza, Luisa F. T1 - Experimental Study of a Small-Size Vacuum Insulated Water Tank for Building Applications JF - Sustainability N2 - Insulation of thermal energy storage tanks is fundamental to reduce heat losses and to achieve high energy storage efficiency. Although water tanks were extensively studied in the literature, the enhancement of the insulation quality is often overlooked. The use of vacuum insulation has the potential to significantly reduce heat losses without affecting the dimension of the storage system. This paper shows for the first time the results of the heat losses tests done for a 0.535 m3 water tank for residential building applications built with a double wall vacuum insulation. The different tests show that the rate of heat losses strictly depends on the temperature distribution inside the tank at the beginning of the experiment. Compared to a conventional water tank insulated with conventional materials, the U-value of the lateral surface was reduced by almost three times (from 1.05 W/K·m2 to 0.38 W/K·m2) using vacuum insulation. However, the bottom part, which is usually used to place the support parts and the piping, is the critical design part of those tanks acting as a thermal bridge with the ambient and enhancing heat losses. Y1 - 2021 U6 - https://doi.org/10.3390/su13105329 VL - 13 IS - 10 SP - 1 EP - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Belyaeva, Inna A. A1 - Klepp, Jürgen A1 - Lemmel, Hartmut A1 - Shamonin (Chamonine), Mikhail T1 - Feasibility of Probing the Filler Restructuring in Magnetoactive Elastomers by Ultra-Small-Angle Neutron Scattering JF - Applied Sciences N2 - Ultra-small-angle neutron scattering (USANS) experiments are reported on isotropic magnetoactive elastomer (MAE) samples with different concentrations of micrometer-sized iron particles in the presence of an in-plane magnetic field up to 350 mT. The effect of the magnetic field on the scattering curves is observed in the scattering vector range between 2.5 x 10(-5) and 1.85 x 10(-4) angstrom(-1). It is found that the neutron scattering depends on the magnetization history (hysteresis). The relation of the observed changes to the magnetic-field-induced restructuring of the filler particles is discussed. The perspectives of employing USANS for investigations of the internal microstructure and its changes in magnetic field are considered. KW - Anisotropy KW - Ferrofluids KW - hysteresis KW - magnetoactive elastomer KW - magnetorheological elastomer KW - Matrix KW - MIicrostructure KW - restructuring of the filler KW - ultra-small-angle neutron scattering Y1 - 2021 U6 - https://doi.org/10.3390/app11104470 VL - 11 IS - 10 SP - 1 EP - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Gamisch, Bernd A1 - Gaderer, Matthias A1 - Dawoud, Belal T1 - On the Development of Thermochemical Hydrogen Storage: An Experimental Study of the Kinetics of the Redox Reactions under Different Operating Conditions JF - Applied Sciences N2 - This work aims at investigating the reduction/oxidation (redox) reaction kinetics on iron oxide pellets under different operating conditions of thermochemical hydrogen storage. In order to reduce the iron oxide pellets (90% Fe2O3, 10% stabilizing cement), hydrogen (H2) is applied in different concentrations with nitrogen (N2), as a carrier gas, at temperatures between between 700 ∘C and 900 ∘C, thus simulating the charging phase. The discharge phase is triggered by the flow of a mixture out of steam (H2O) and N2 at different concentrations in the same temperature range, resulting in the oxidizing of the previously reduced pellets. All investigations were carried out in a thermo-gravimetric analyzer (TGA) with a flow rate of 250mL/min. To describe the obtained kinetic results, a simplified analytical model, based on the linear driving force model, was developed. The investigated iron oxide pellets showed a stable redox performance of 23.8% weight reduction/gain, which corresponds to a volumetric storage density of 2.8kWh/(L bulk), also after the 29 performed redox cycles. Recalling that there is no H2 stored during the storage phase but iron, the introduced hydrogen storage technology is deemed very promising for applications in urban areas as day-night or seasonal storage for green hydrogen. KW - hydrogen storage KW - iron/iron oxide KW - reaction kinetics KW - redox reactions Y1 - 2021 U6 - https://doi.org/10.3390/app11041623 N1 - Corresponding author: Belal Dawoud VL - 11 IS - 4 SP - 1 EP - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Geilfuß, Kristina A1 - Dawoud, Belal T1 - Analytical investigation of a zeolite-NaY-water adsorption heat and cold storage and its integration into a steam power process JF - Energy N2 - tabilizing the effects of greenhouse gas emissions on the atmosphere is a key step towards solving the global climate change problems. Storage technologies play an essential role in compensating the discrepancy between surplus energy and peak times. Sorption processes, in particular, offer an environment friendly way for almost loss-free heat (of adsorption or absorption) and cold storage. This work is dedicated first to analytically investigate the potential of applying NaY-Water/Zeolite as a working pair for heat and cold storage upon utilizing high temperature heat. It turned out that, the mass of the adsorber heat exchanger increases the useful specific heat stored from 229 kWh/tzeolite for the ideal storage to 538 kWh/tzeolite or even higher depending on the thermal capacity of the adsorber heat exchanger (AdsHX). Contrary to that trend, COP will decrease with increasing the thermal capacity of the AdsHX. Sensible heat losses between charging and discharging phases do have a negative effect on both stored heating capacity and COP. In addition, an innovative hybrid steam power cum adsorption storage process is introduced and analytically investigated at different ambient conditions and time scenarios for on-peak and off-peak durations over the day. The introduced hybrid process seems quite promising in achieving electrical power production and efficiency enhancements during peak load durations. The extent of enhancing both performance indicators increases with increasing the ambient temperature difference between peak and off-peak times. Y1 - 2020 U6 - https://doi.org/10.1016/j.energy.2020.116977 VL - 195 IS - March PB - Elsevier ER - TY - JOUR A1 - Snarskii, Andrei A. A1 - Shamonin (Chamonine), Mikhail A1 - Yuskevich, Pavel T1 - Effective medium theory for the elastic properties of composite materials with various percolation thresholds JF - Materials N2 - It is discussed that the classical effective medium theory for the elastic properties of random heterogeneous materials is not congruous with the effective medium theory for the electrical conductivity. In particular, when describing the elastic and electro-conductive properties of a strongly inhomogeneous two-phase composite material, the steep rise of effective parameters occurs at different concentrations. To achieve the logical concordance between the cross-property relations, a modification of the effective medium theory of the elastic properties is introduced. It is shown that the qualitative conclusions of the theory do not change, while a possibility of describing a broader class of composite materials with various percolation thresholds arises. It is determined under what conditions there is an elasticity theory analogue of the Dykhne formula for the effective conductivity. The theoretical results are supported by known experiments and show improvement over the existing approach. The introduction of the theory with the variable percolation threshold paves the way for describing the magnetorheological properties of magnetoactive elastomers. A similar approach has been recently used for the description of magneto-dielectric and magnetic properties. KW - elastic properties KW - effective medium approximation KW - self-consistent KW - random heterogeneous medium KW - two-phase composite material KW - percolation threshold Y1 - 2020 U6 - https://doi.org/10.3390/ma13051243 VL - 13 IS - 5 SP - 1 EP - 19 PB - MPDI CY - Basel ER - TY - JOUR A1 - Snarskii, Andrei A. A1 - Shamonin (Chamonine), Mikhail A1 - Yuskevich, Pavel A1 - Saveliev, Dmitry V. A1 - Belyaeva, Inna A. T1 - Induced anisotropy in composite materials with reconfigurable microstructure: Effective medium model with movable percolation threshold JF - Physica A: Statistical Mechanics and its Applications N2 - In composite materials, with field-dependent restructuring of the filler material (changes in the mutual arrangement of inclusions), the presence of an external magnetic field induces anisotropy of the dielectric properties, even if the composite is isotropic in the absence of an external field. A modified effective medium approximation is proposed for the calculation of the components of effective permittivity within a class of composites with reconfigurable microstructure, where both phases (the filler and the matrix) are isotropic and the inclusions have spherical shape. The effective physical properties are calculated in the parallel and perpendicular directions to an applied field. The appearance of the anisotropy of the permittivity is simulated by the introduction of two not-equal, possibly variable (field-dependent) percolation thresholds. The implications, of the proposed theoretical approach, are demonstrated for the case of the dielectric properties of magnetoactive elastomers (MAEs). In MAEs with soft polymer matrices, the mutual arrangement of micrometer-sized magnetic inclusions can significantly change in an applied magnetic field. A reasonable agreement between theory and experiment at a measurement frequency of 1 kHz is found, and is improved in comparison to the previous models. The components of the effective permittivity tensor, characterizing the dielectric properties along the direction of the applied magnetic field and in the orthogonal direction, grow with an increasing field. This growth is more pronounced for the permittivity component in the field direction. The possible extensions of the theoretical model and future directions of research are discussed. The presented theoretical approach can be useful for the application-driven development of a number of smart materials, in particular electro- and magnetorheological gels, elastomers and fluids. KW - Effective medium theory KW - Magnetoactive elastomer KW - Percolation threshold KW - Anisotropy KW - Effective permittivity KW - Random heterogeneous medium Y1 - 2020 U6 - https://doi.org/10.1016/j.physa.2020.125170 VL - 560 IS - December PB - Elsevier ER - TY - JOUR A1 - Saveliev, Dmitry V. A1 - Belyaeva, Inna A. A1 - Chashin, Dmitri V. A1 - Fetisov, Leonid Y. A1 - Romeis, Dirk A1 - Kettl, Wolfgang A1 - Kramarenko, Elena Yu A1 - Saphiannikova, M. A1 - Stepanov, Gennady V. A1 - Shamonin (Chamonine), Mikhail T1 - Giant extensional strain of magnetoactive elastomeric cylinders in uniform magnetic fields JF - Materials N2 - Elongations of magnetoactive elastomers (MAEs) under ascending–descending uniform magnetic fields were studied experimentally using a laboratory apparatus specifically designed to measure large extensional strains (up to 20%) in compliant MAEs. In the literature, such a phenomenon is usually denoted as giant magnetostriction. The synthesized cylindrical MAE samples were based on polydimethylsiloxane matrices filled with micrometer-sized particles of carbonyl iron. The impact of both the macroscopic shape factor of the samples and their magneto-mechanical characteristics were evaluated. For this purpose, the aspect ratio of the MAE cylindrical samples, the concentration of magnetic particles in MAEs and the effective shear modulus were systematically varied. It was shown that the magnetically induced elongation of MAE cylinders in the maximum magnetic field of about 400 kA/m, applied along the cylinder axis, grew with the increasing aspect ratio. The effect of the sample composition is discussed in terms of magnetic filler rearrangements in magnetic fields and the observed experimental tendencies are rationalized by simple theoretical estimates. The obtained results can be used for the design of new smart materials with magnetic-field-controlled deformation properties, e.g., for soft robotics. KW - magnetostriction KW - magnetoactive elastomer KW - extensional strain KW - hysteresis KW - magnetomechanical effect KW - magnetodeformation Y1 - 2020 U6 - https://doi.org/10.3390/ma13153297 SN - 1996-1944 N1 - Corresponding author: Mikhail Shamonin VL - 13 IS - 15 SP - 1 EP - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Saveliev, Dmitry V. A1 - Belyaeva, Inna A. A1 - Chashin, Dmitri V. A1 - Fetisov, Leonid Y. A1 - Shamonin (Chamonine), Mikhail T1 - Large Wiedemann effect in a magnetoactive elastomer JF - Journal of Magnetism and Magnetic Materials N2 - Large twists of a soft tube (hollow cylinder) in helical magnetic fields are presented for the first time. Such a phenomenon is usually denoted as the Wiedemann effect. The tube is fabricated from a soft magnetoactive elastomer material with the shear modulus of about 56 kPa. The composite material comprises 80 mass% of micrometer-sized iron particles embedded into a polydimethylsiloxane matrix. The circular magnetic field is generated by an electric current in a straight wire passing through the inner hole of the tube. The maximum value of approximately 350″/cm is observed in a longitudinal magnetic field of a few kA/m overlapped with a circumferential magnetic field of about 1.4 kA/m on the surface of the inner hole. A pronounced hysteresis in the dependence of the Wiedemann effect on the circular magnetic field is found. The ways to enhance the Wiedemann twist in magnetoactive elastomers are discussed. The observed large effect is promising for application in magnetic-field controlled torsional actuators, in particular for soft robotics. Y1 - 2020 U6 - https://doi.org/10.1016/j.jmmm.2020.166969 VL - 511 IS - October PB - Elsevier ER - TY - JOUR A1 - Anders, M. A1 - Briem, Ulrich A1 - Novak, G. A1 - Steinbach, G. T1 - Inspektionsintervalle im Blick JF - Technische Logistik Y1 - 2020 SP - 14 EP - 17 PB - Huss-Medien CY - Berlin ER - TY - JOUR A1 - Brock, Damian A1 - Koder, Alexander A1 - Rabl, Hans-Peter A1 - Touraud, Didier A1 - Kunz, Werner T1 - Optimising the biodiesel production process: Implementation of glycerol derivatives into biofuel formulations and their potential to form hydrofuels JF - Fuel N2 - A new biofuel concept is developed, enabling the usage of vegetable oils and glycerol derivatives in mixtures with biodiesel. This concept significantly enhances the biodiesel production's profitability and thus strongly contributes to the sustainability of future biofuels. After simple addition reactions with building block chemicals, less hydrophilic glycerol derivatives are obtained, which are compatible with biofuels. Even more, the products of the reactions of glycerol with acetone or butyric acid, referred to as solketal and tributyrin, respectively, lead to promising biofuels in mixtures with rapeseed oil and its biodiesel. Due to their low freezing points, they act as cloud and freezing point depressants, when added to vegetable oil/biodiesel blends. Further, since their viscosity is close to common biodiesel, biofuels containing high amounts of vegetable oil and even more glycerol derivatives than they arise during the biodiesel production can be obtained. Thus, this new class of biofuels enables adaptable compositions depending on the application and also the usage as drop-in fuel without any or just few percent of further additives. After optimising the formulations, ignition delay, exhaust gas recirculation, fuel consumption and combustion process measurements were performed in an unmodified upto-date diesel engine. The experiments showed that the properties of the formulated biofuels are either similar to or even better than diesel. The hydrotropy of the glycerol derivatives in these mixtures enables the potential to implement water into biofuels, so-called hydrofuels, reducing nitrogen oxide emissions and leading to further optimised dropin fuels. Y1 - 2020 U6 - https://doi.org/10.1016/j.fuel.2019.116695 VL - 264 IS - March PB - Elsevier ER - TY - JOUR A1 - Frazzica, Andrea A1 - Brancato, Vincenza A1 - Dawoud, Belal T1 - Unified Methodology to Identify the Potential Application of Seasonal Sorption Storage Technology JF - Energies N2 - In this study, the definition of a new methodology for a preliminary evaluation of the working boundary conditions under which a seasonal thermal energy storage (STES) system operates is described. The approach starts by considering the building features as well as the reference heating system in terms of solar thermal collectors’ technology, ambient heat sinks/source, and space heating distribution systems employed. Furthermore, it is based on a deep climatic analysis of the place where the STES needs to be installed, to identify both winter and summer operating conditions. In particular, the STES energy density is evaluated considering different space heating demands covered by the STES (ranging from 10% up to 60%). The obtained results demonstrate that this approach allows for the careful estimation of the achievable STES density, which is varies significantly both with the space heating coverage guaranteed by the STES as well as with the ambient heat source/sink that is employed in the system. This confirms the need for careful preliminary analysis to avoid the overestimation of the STES material volume. The proposed approach was then applied for different climatic conditions (e.g., Germany and Sweden) and the volume of one of the most attractive composite sorbent materials reported in the literature, i.e., multi-wall carbon nanotubes (MWCNT)-LiCl, using water as the working fluid, needed for covering the variable space heating demand in a Nearly Zero Energy Building (NZEB) was calculated. In the case of Swedish buildings, it ranges from about 3.5 m3 when 10% of the space heating demand is provided by the STES, up to 11.1 m3 when 30% of the space heating demand is provided by the STES. KW - seasonal thermal storage KW - composite sorbents KW - operating conditions Y1 - 2020 U6 - https://doi.org/10.3390/en13051037 VL - 13 IS - 5 SP - 1 EP - 17 PB - MPDI CY - Basel ER - TY - BOOK A1 - Freni, Angelo A1 - Dawoud, Belal A1 - Bonaccorsi, Lucio Maria A1 - Chmielewski, Stefanie A1 - Frazzica, Andrea A1 - Calabrese, Luigi A1 - Restuccia, Giovanni T1 - Characterization of Zeolite-Based Coatings for Adsorption Heat Pumps N2 - This book proposes a radically new approach for characterizing thermophysical and mechanical properties of zeolite-based adsorbent coatings for Adsorptive Heat Transformers (AHT). It presents a developed standard protocol for the complete characterization of advanced coated adsorbers. Providing an in-depth analysis of the different procedures necessary for evaluating the performance of adsorbers, it also presents an analysis of their stability under the hydrothermal and mechanical stresses during their entire life cycle. Adsorptive Heat Transformers (AHT), especially adsorption chillers and heat pumps, are considered to be promising technologies to increase thermal energy efficiency. Nevertheless, an overall increase in performance of this apparatus is necessary for them to be considered a mature technology to be used commercially. Development of innovative coated adsorbers can be perceived as a key issue for the enhancement of AHT technology. This procedure relies on the deposition, either by means of a binder or by direct crystallization, of the adsorbent material over a metallic heat exchanger, aiming at the improvement of the heat transfer between the external heat source and the adsorbent itself. This book offers a valuable resource to those working on the development of novel adsorbent materials and advanced adsorbent beds for heating and cooling applications. It is also intended for researchers interested in renewable energy and energy efficiency. KW - AHT KW - Adsorbent Coatings KW - Adsorption KW - Adsorptive Heat Transformers KW - Stability Verification KW - Zeolite-based Adsorbent Coatings KW - Zeolite-coated Heat Pumps Y1 - 2015 U6 - https://doi.org/10.1007/978-3-319-09327-7 PB - Springer CY - Berlin ER - TY - CHAP A1 - Schiedermeier, Maximilian A1 - Rettner, Cornelius A1 - Steiner, Marcel A1 - März, Martin T1 - Dual-inverter control synchronization strategy to minimize the DC-link capacitor current T2 - 2020 IEEE Vehicle Power and Propulsion Conference (VPPC), 18 November 2020 - 16 December 2020, Gijon, Spain N2 - This paper proposes the possible switching synchronization strategies of an automotive dual-inverter against the background of minimizing the RMS DC-link capacitor current. The publication mainly focuses on the straight-ahead motion of a rear axle with one electric drive per wheel. In addition to it, a dual-inverter consisting of two subinverters with a common DC-link capacitor is taken into consideration. These sub-inverters each have three phases and are based on a 2-level voltage-source-topology. To control the electrical machines, the continuous Space-Vector-Modulation strategy is used. For this application, different control signal synchronization strategies of the two sub-inverters of the dualinverter are presented. Apart from the existing strategies, this paper proposes a new method, which inherits a compromise between low complexity and high effectiveness. In contrast to previous publications, the resulting capacitor currents are quantified and subsequentlyevaluated. This novel quantification, which is dependent on the dual-inverter’s operating point, provides a base for targeted dimensioning of the capacitor. Moreover, this forms the foundation for further investigations of vehicle’s cornering, as well as for the possible synchronization of stand-alone inverters. In the context of this publication, the presented results are verified by experimentally determined data of a motor-inverter system. KW - Axles KW - Capacitors KW - Complexity theory KW - DC-link capacitor KW - Dual-inverter KW - interleaved inverters KW - Inverters KW - space vector modulation (SVM) KW - Switches KW - Synchronization KW - Voltage source inverter (VSI) KW - Wheels Y1 - 2020 U6 - https://doi.org/10.1109/VPPC49601.2020.9330921 SP - 1 EP - 6 PB - IEEE ER - TY - CHAP A1 - Koder, Alexander A1 - Zacherl, Florian A1 - Rabl, Hans-Peter A1 - Mayer, Wolfgang A1 - Gruber, Georg A1 - Dotzer, Thomas T1 - Jatropha Oil as an Alternative Fuel for Modern Diesel Engines - Injection Characteristics and EGR-Compatibility T2 - WCX 17: SAE World Congress 2017 N2 - An effective way to reduce greenhouse gas emissions (GHGs) is to use rurally produced straight jatropha oil as a substitute for diesel fuel. However, the different physical and chemical properties of straight vegetable oils (SVOs) require a customized setup of the combustion engine, particularly of the injection timing and quantity. Therefore, this study demonstrates the differences in the injection and combustion processes of jatropha oil compared to diesel fuel, particularly in terms of its compatibility with exhaust gas recirculation (EGR). A 2.2 l common-rail diesel engine with a two-stage turbocharging concept was used for testing. To examine the differences in injection rate shaping of diesel fuel and jatropha oil, the injector was tested with an injection rate analyzer using both the fuels. To investigate the combustion process, the engine was mounted at an engine test bench and equipped with a cylinder pressure indication system. All limited emissions, as well as fuel consumption, were measured. Various injection strategies, boost and rail pressure levels were tested at different EGR rates in terms of their impact on the combustion process. EGR in particular offers a great potential in the case of jatropha oil combustion due to its oxygen content. In addition, the investigation of injection rate shaping in combination with cylinder pressure analysis allowed a detailed thermodynamic evaluation of the combustion process. Ignition delay (ID) was also analyzed using a new method to calculate the start of combustion (SOC) Y1 - 2017 U6 - https://doi.org/10.4271/2017-01-5000 PB - SAE International ER - TY - JOUR A1 - Chatzitakis, Paris A1 - Safarov, Javid A1 - Opferkuch, Frank A1 - Dawoud, Belal A1 - Hassel, Egon T1 - Vapor pressures and activity coefficients of 2,2,2-trifluoroethanol in binary mixtures with 1,3-dimethyl-2-imidazolidinone and 2-pyrrolidone JF - Journal of Molecular Liquids N2 - The vapor pressures of two binary mixtures containing 2-trifluoroethanol (TFE) + 1,3-dimethyl-2-imidazolidinone (DMI) and TFE + 2-pyrrolidone (PYR), were investigated at temperatures T = (274.15 to 423.15) K using two different static method installations. Both combinations were modelled using an extended Clausius-Clapeyron equation with concentration dependent parameters and the NRTL equation with temperature dependent parameters. The best fit was obtained using the NRTL equation. KW - 2-Trifluoroethanol KW - 1,3-Dimethyl-2-imidazolidinone KW - 2-Pyrrolidone KW - Vapor pressure KW - NRTL KW - Clausius-Clapeyron Y1 - 2020 U6 - https://doi.org/10.1016/j.molliq.2020.112828 SN - 0167-7322 VL - 305 IS - May PB - Elsevier ER - TY - JOUR A1 - Hansen, B. A1 - Hoebler, Michael A1 - Purr, S. A1 - Meinhardt, J. A1 - Merklein, M. T1 - Basics for inline measurement of tribological conditions in series production of car body parts JF - IOP Conference Series: Materials Science and Engineering N2 - The quality of car body parts in series production is strongly dependent on the tribological behavior. Fluctuating material properties such as the sheet roughness and the amount of lubricant have an influence on the forming process. On the basis of large amounts of data it is possible to investigate the friction behavior in series production and to make process adjustments if required. Therefore, inline measurement systems have a great potential to detect the sheet roughness during the cutting process of blanks in the coil line. Furthermore, contactless systems are advantageous as they do not damage the surface. Nevertheless, the optical measuring is influenced by the lubricant layer on top of the surface. Therefore, the previously unknown impact of the lubricant on the measuring result is investigated. Within this study, stationary optical roughness measurements have been conducted using different amounts of lubricant on hot-dip galvanized EDT steel. The results demonstrate the influence of different amounts of lubricant on the sheet roughness measurement. Hence, it is possible to correct the inline measuring results and gain knowledge of fluctuating surface roughness. In addition, strip drawing test has been carried out to investigate the effect of fluctuating tribological conditions. Y1 - 2019 U6 - https://doi.org/10.1088/1757-899x/651/1/012050 VL - 651 PB - IOP Publishing ER - TY - JOUR A1 - Briem, Ulrich T1 - Biegesteifigkeit von Drahtseilen JF - Technische Logistik Y1 - 2019 IS - 11-12 SP - 24 EP - 25 PB - Huss-Medien CY - Berlin ER - TY - CHAP A1 - Bresinsky, Markus A1 - Reusner, Florian von T1 - GLOBE – Learn and Innovate Digitization by a Virtual Collaboration Exercise and Living Lab T2 - Interactivity, Game Creation, Design, Learning, and Innovation. 6th International Conference, ArtsIT 2017, and Second International Conference, DLI 2017, Heraklion, Crete, Greece, October 30–31, 2017, Proceedings N2 - This paper presents an advanced interactive learning platform .dot that implements the GLOBE exercise, using innovative information and communication technologies to enhance learning and development of management and leadership skills in a complex organizational setting. GLOBE on the one hand focuses on competences around ICT and virtual collaboration, and on the other hand on digital transformation, technologies and tools at higher education institutions. By this applied science, learning and developing on the real-world platform, analysis and drive of digital innovation and transformation can be fostered. The main goal is to co-create knowledge and solutions in the following focused subjects: Management and leadership of multidisciplinary, multinational and multicultural virtual and real collaboration in a complex organizational environment. GLOBE uses real world scenarios (e.g. United Nations mission) and involves real world actors. This comprehensive educational approach should enhance learning techniques and leverage learning progress with hands-on experiences and applied science in the context of ICT and virtual collaboration, and the embodied dynamics of behavior to support innovation and development. KW - Digitization KW - Experiential learning KW - Human factors KW - ICT KW - Interactive and collaborative learning KW - Living Lab KW - Open innovation KW - Problem-based learning KW - Virtual collaboration Y1 - 2018 U6 - https://doi.org/10.1007/978-3-319-76908-0_26 SP - 273 EP - 281 PB - Springer Nature ER - TY - JOUR A1 - Koder, Alexander A1 - Schwanzer, Peter A1 - Zacherl, Florian A1 - Rabl, Hans-Peter A1 - Mayer, Wolfgang A1 - Gruber, Georg A1 - Dotzer, Thomas T1 - Combustion and emission characteristics of a 2.2L common-rail diesel engine fueled with jatropha oil, soybean oil, and diesel fuel at various EGR-rates JF - Fuel N2 - To investigate the combustion and emission behavior of straight vegetable oils (SVO), jatropha oil, soybean oil, and diesel fuel were tested. For this research, a 2.2L common-rail engine with a two-stage turbocharging concept was equipped with a cylinder pressure indication system, an exhaust-gas analyzer, an AVL Micro Soot sensor and a Scanning Mobility Particle Sizer 3936 (SMPS) device to detect the particle-size-distribution (PSD). At a low and mid-load engine-operating point (EOP), the thermodynamic and emissions were investigated under various exhaust gas recirculation (EGR) rates with respect to the PSD. Moreover, the injection behavior of the three test fuels was analyzed separately using an injection rate analyzer. This procedure facilitates the thermodynamic investigations of the engine process and allows the calculation of the hydraulic delay (HD) as well as the ignition delay (ID). The ID of the SVO fuels compared to diesel fuel was found to be lower at all engine-operating modes, while jatropha oil always showed the shortest ID. In the particulate-nitrogen oxide (NOX) trade-off, the SVO fuels showed higher particulate matter (PM) emissions at the low-load EOP, whereas the PM emissions of diesel fuel overtop the SVO fuels at a higher engine load. With increased EGR-rates, a rise in the particle size was observed for all fuels. At the low-load EOP, the SVO fuels showed larger particles for high EGR-rates. This effect also changed by increasing the engine-load to the mid-load EOP, wherein the particle size of the diesel fuel emissions is higher by applying elevated EGR-rates. KW - BEHAVIOR KW - BLENDS KW - Exhaust gas recirculation KW - IGNITION KW - INJECTION KW - Jatropha oil KW - KARANJA KW - Particle-size-distribution KW - PERFORMANCE KW - RME KW - Soybean oil KW - Straight vegetable oil combustion KW - VEGETABLE-OILS Y1 - 2018 U6 - https://doi.org/10.1016/j.fuel.2018.04.147 VL - 228 IS - September SP - 23 EP - 29 PB - Elsevier ER - TY - JOUR A1 - Sýkora, Miroslav A1 - Markova, Jana A1 - Diamantidis, Dimitris T1 - Bayesian network application for the risk assessment of existing energy production units JF - Reliability Engineering & System Safety N2 - The assessment of existing infrastructures in the energy sector is of great economic significance worldwide. Fossil power stations are reaching their design service life and rational decisions concerning extensions of service life, maintenance and replacements of devices should be based on updated information of the actual conditions of the energy devices and their components, and on cost-benefit analysis using risk analysis and probabilistic optimisation procedures. The contribution provides an integrated framework for probabilistic reliability and risk assessment of existing energy production units considering availability and human safety criteria. An extensive case study focused on risks of an energy production unit in a fossil power station is provided to support practical applications. A Bayesian network is thereby implemented to assess the risks of the selected production unit. Special emphasis is given to the input data consisting of failure rates obtained from recorded data and expert judgements. The influence of uncertainties in the considered performance indicators on the availability of the unit is analysed. It is shown that a reasonably simplified framework can provide a valuable assessment of the influence of individual devices and their components on availability and societal risk, identifying thus the major risk contributors. (C) 2017 Elsevier Ltd. All rights reserved. KW - Availability KW - Bayesian networks KW - Decision-making KW - design KW - Failure probability KW - FRAMEWORK KW - Optimization KW - Production unit KW - Risk analysis KW - Societal risk KW - SYSTEMS KW - Uncertainties Y1 - 2018 U6 - https://doi.org/10.1016/j.ress.2017.09.006 VL - 169 IS - January SP - 312 EP - 320 PB - Elsevier ER - TY - JOUR A1 - da Silva Mota, Fabio Antonio A1 - Hinckel, Jose Nivaldo A1 - Rocco, Evandro Marconi A1 - Schlingloff, Hanfried T1 - Trajectory Optimization of Launch Vehicles Using Object-oriented Programming JF - Journal of aerospace technology and management N2 - The aim of this study is to model launch vehicles with focus on 3-DOF trajectory optimization using a modular approach. Despite the large number of operational launch vehicles, they usually consist of basic components and subsystems. In other words, a launch vehicle is an assembly of stages, which in turn is divided into propellant system and engine, and the engine is an assembly of basic components such as pumps, turbines, combustion chamber, and nozzle. To allow future extension and reuse of the codes, a modular structure using object-oriented programming is used. Two formulations of state equations of the trajectory and two optimization methods are described. The launch vehicle performance will be measured by payload mass for a given mission. The simulations of the VLS-1, Ariane 5 and VLS-Alfa were performed and showed good agreement with the literature. KW - Launch vehicle KW - Object-oriented programming KW - Optimization KW - Trajectory Y1 - 2018 U6 - https://doi.org/10.5028/jatm.v10.948 VL - 10 PB - Institute of Aeronautics and Space ER - TY - JOUR A1 - Kurzweil, Peter A1 - Shamonin (Chamonine), Mikhail T1 - State-of-Charge Monitoring by Impedance Spectroscopy during Long-Term Self-Discharge of Supercapacitors and Lithium-Ion Batteries JF - Batteries N2 - Frequency-dependent capacitance C(ω) is a rapid and reliable method for the determination of the state-of-charge (SoC) of electrochemical storage devices. The state-of-the-art of SoC monitoring using impedance spectroscopy is reviewed, and complemented by original 1.5-year long-term electrical impedance measurements of several commercially available supercapacitors. It is found that the kinetics of the self-discharge of supercapacitors comprises at least two characteristic time constants in the range of days and months. The curvature of the Nyquist curve at frequencies above 10 Hz (charge transfer resistance) depends on the available electric charge as well, but it is of little use for applications. Lithium-ion batteries demonstrate a linear correlation between voltage and capacitance as long as overcharge and deep discharge are avoided. KW - aging KW - capacitance KW - self-discharge KW - state-of-charge monitoring KW - supercapacitor Y1 - 2018 U6 - https://doi.org/10.3390/batteries4030035 VL - 4 IS - 3 SP - 1 EP - 13 PB - MPDI ER - TY - JOUR A1 - Sýkora, Miroslav A1 - Diamantidis, Dimitris A1 - Holický, Milan A1 - Marková, Jana A1 - Rózsás, Árpád T1 - Assessment of compressive strength of historic masonry using non-destructive and destructive techniques JF - Construction and Building Materials N2 - Masonry structures were built by various techniques using different materials, the properties of which exhibit a considerable scatter dependent on periods of construction and region-specific conditions. For historic structures with a heritage value, various non- or minor-destructive tests (NDTs) are commonly applied, while the application of destructive tests (DTs) is minimized. The contribution is based on investigations of 15 historic stone and clay brick masonry structures, for which NDT strengths of masonry units are verified by DTs. The proposed operational approach makes it possible to account for statistical uncertainty due to a limited number of DTs used to calibrate NDTs. KW - Calibration KW - Clay bricks KW - Compressive strength KW - Mortar KW - Non-destructive test KW - Statistical analysis KW - Stone masonry KW - Uncertainty Y1 - 2018 U6 - https://doi.org/10.1016/j.conbuildmat.2018.10.180 VL - 193 IS - December SP - 196 EP - 210 PB - Elsevier ER - TY - JOUR A1 - Lee, Wai-Kong A1 - Schubert, Martin J. W. A1 - Ooi, Boon Yaik A1 - Ho, Stanley Jian-Qin T1 - Multi-source energy harvesting and storage for floating wireless sensor network nodes with Long Range Communication Capability JF - IEEE Transactions on Industry Applications N2 - Wireless sensor networks are widely used for environmental monitoring in remote areas. They are mainly composed of wireless sensor nodes, usually powered by batteries with limited capacity, but are expected to communicate in long range and operate for extended time periods. To overcome these limitations, many energy harvesting techniques are proposed to power wireless nodes for prolonged operation, whereas multihop techniques are utilized to extend the communication range. In this paper, a novel floating device with multisource energy harvesting technology that can be used as a wireless sensor node is proposed. The long range communication between wireless sensor nodes and a gateway is established through LoRa technology. In addition to conventional solar panels, an energy harvesting technique based on thermoelectric generators exploiting thermal differences created between water surface and materials exposed to sunlight is proposed. Energy generated from photovoltaic and thermoelectric generators is combined to power the wireless sensor node. This floating device consumes 6.6216 Wh per day when used as a wireless sensor node for the collection and transmission of environmental data. The sensor node can operate on a water surface for at least 9.6 days when it is not exposed to sunlight. During a sunny day, the floating device can harvest 8.375 Wh from solar panels and 0.425 Wh from thermoelectric generation. In other words, the floating device harvests sufficient energy to be self-sustaining during sunny days. KW - Wireless sensor networks KW - Energy harvesting KW - floating device KW - LoRa KW - sensor node KW - solar energy KW - thermoelectric generation Y1 - 2018 U6 - https://doi.org/10.1109/TIA.2018.2799 VL - 54 IS - 3 SP - 2606 EP - 2615 PB - IEEE ER - TY - CHAP A1 - Holický, Milan A1 - Diamantidis, Dimitris A1 - Sýkora, Miroslav T1 - Effects of Quality Control on Reliability of Reinforced Concrete Structures according to Eurocodes T2 - fib Symposium 2016 : Performance-Based Approaches for Concrete Structures, 14, 2016, Cape town N2 - The effect of quality control on structural reliability represents an increasingly important concern of designers and thus is investigated in this contribution, focusing on reinforced concrete structures. Recent European documents for structural design – Eurocodes, fib Model Code 2010 and ISO 2394:2015 for general principles on structural reliability indicate that the partial factors may be adjusted to available information on the quality control of structures. In particular, the partial factors for concrete and steel strength may be significantly reduced taking into account actual execution quality and related available data. Using probabilistic methods of structural reliability, effects for execution quality are investigated in this contribution considering two fundamental reinforced concrete members: a beam (or slab) exposed to bending and a short column exposed to compression. It is shown that the reliability of reinforced concrete members may vary with the load ratio of variable and permanent actions. It appears also that the structural members of a basic quality, designed using unreduced partial factors, have a greater reliability level than the members of an increased quality, designed using the partial factors reduced according to EN 1992 1 1. This provides the basis for recommendations for further code developments. KW - Eurocodes KW - partial factors KW - quality control KW - reliability Y1 - 2016 UR - https://www.researchgate.net/publication/310616676_Effects_of_quality_control_on_reliability_of_reinforced_concrete_structures_according_to_Eurocodes ER - TY - CHAP A1 - Dessort, Ronnie A1 - Chucholowski, Cornelius A1 - Rill, Georg ED - Bargende, Michael ED - Reuss, Hans-Christian ED - Wiedemann, Jochen T1 - Parametrical approach for modeling of tire forces and torques in TMeasy 5 T2 - Proceedings of the 16. Internationales Stuttgarter Symposium Automobil- und Motorentechnik N2 - For the dynamic simulation of on-road vehicles, the model-element "tire/road" is of special importance, according to its influence on the achievable results. Sufficient description of the interaction between tire and road is one of the most challenging tasks of vehicle modeling. Two groups of tire models can be classified: handling models and structural or high-frequency models. Usually, various assumptions are made in modeling vehicles as multibody systems. Therefore, in the interest of balanced modeling, the precision of the complete vehicle model should stand in reasonable relation to the performance of the applied tire model. Handling tire models are characterized by a useful compromise between user friendliness, model complexity, and efficiency in computation time on the one hand, and precision in representation on the other hand. The present paper describes the general approach of the semi-physical tire model TMeasy for vehicle dynamics and handling simulation and its enhancement for bore torque simulation in Version TMeasy 5. A parameter fitting process realized by TESIS DYNAware and the validation of real tire behavior by simulation with DYNA4 is presented. Even with first guess parameters, the TMeasy tire model behaves in a realistic and plausible manner. Parameter estimation is intuitive and datasets from previous model versions can be easily migrated. After parameter fitting, the simulation results correlate well with both the tire test rig and full vehicle measurements. The enhancement of a three-dimensional slip calculation in the latest version does not modify the model behavior for high slip conditions, but improves the results not only for highly dynamic situations but also for low speed maneuvers such as parking. KW - Drehmoment KW - dynamische Simulation KW - Einparken KW - Fahrzeugdynamik KW - Mehrkörpersystem KW - Parameterabschätzung KW - Rechenzeit KW - REIFENKRAFT KW - Reifentest KW - simuliertes Ergebnis Y1 - 2016 UR - https://www.researchgate.net/publication/317037138_Parametrical_Approach_for_Modeling_of_Tire_Forces_and_Torques_in_TMeasy_5 SN - 978-3-658-13254-5 SP - 435 EP - 449 PB - Springer CY - Wiesbaden ER - TY - JOUR A1 - Ebner, Lena A1 - Elsner, Michael T1 - Thermische Energiespeicher: Wärmespeicherung in Kugelschüttungen. Numerische Simulation der Stromungs-, Warmetransport- und Entstaubungsvorgänge JF - BWK. Das Energie-Fachmagazin N2 - Festbettspeicher bieten die Möglichkeit, thermische Energie auf einem hohen Temperaturniveau zu speichern. Die oft kugelförmigen Schüttgüter bestehen aus Materialien hoher Dichte und Wärmekapazität. Neben der Wärmespeicherung können mithilfe dieser Schüttungen partikelbeladene Abgase entstaubt werden. Die Strömungs-, Wärmetransport- und Entstaubungsvorgänge bei der Speicherung von Wärme in einem Schüttschichtwärmeübertrager werden in Zusammenarbeit mit Fraunhofer Umsicht, Institutsteil Sulzbach-Rosenberg, untersucht. Einen entscheidenden Aspekt der Arbeiten stellt die numerische Simulation der im Wärmeübertrager ablaufenden Vorgänge dar. Die transiente Simulation von Schüttschichtwärmeübertragern ist nur mit Vereinfachungen möglich, da aufgrund der komplexen Geometrie und der daraus folgenden feinen Vernetzung eine enorme Rechenleistung benötigt wird. Bei den in diesem Beitrag vorgestellten Ergebnissen werden die physikalischen Vorgange in einem Ausschnitt der Schüttschicht simuliert, in dem die Kugelgeometrie detailliert modelliert ist. Die Ergebnisse der numerischen Simulation werden durch analytische Berechnungen aus der Literatur bestätigt. Eine Reihe von Parametervariationen zeigen die Einflüsse verschiedener Größen beispielsweise auf den Druckverlust sowie den Unterschied zwischen radialer und axialer Durchströmung einer Schüttschicht. Die Entstaubung partikelbeladener Gase innerhalb einer Schüttschicht wird zunächst anhand einer Einzelkugel untersucht; die Erweiterung auf die Entstaubung in einer Kugelpackung ist vorgesehen. Die Ergebnisse der numerischen Simulationen sollen mit den an einem Versuchsstand experimentell bestimmten Daten verglichen werden. KW - Abgas KW - Druckverlust KW - Durchströmung KW - Entstaubung KW - Festbett KW - hohe Dichte KW - Kugelschüttung KW - numerische Simulation KW - Rechenleistung KW - Schüttgut KW - thermische Energie KW - Wärmekapazität KW - Wärmespeicherung KW - Wärmetransport KW - Wärmeübertrager Y1 - 2014 VL - 66 IS - 9 SP - 40 EP - 43 PB - VDI-Verlag ER - TY - CHAP A1 - Hofmann, Gerhard A1 - Scharfenberg, Georg T1 - Überlegungen zur normativen Anpassung der ISO 26262 aufgrund des autonomen Fahrens T2 - Automotive Software Kongress, 2015 N2 - In der Automobilindustrie ist neben der Elektromobilität und dem Leichtbau auch das Gebiet der Fahrerassistenz ein Zukunftsfeld. Speziell Fahrerassistenzsysteme, wie z.B. der Stauassistent, sind in Hinblick auf das autonome Fahren als dessen Vorstufe zu sehen. Aktuelle Assistenzfunktionen basieren auf der Präsenz des Fahrers. Die Fahrerassistenzsysteme sind nur durch Funktionen der Elektrik/Elektronik ermöglicht worden. Durch Maßnahmen der "Funktionalen Sicherheit" müssen Risiken, die durch Fehler der Elektrik/Elektronik zu Gefahren führen könnten, unter eine akzeptierte Grenze gesenkt werden. Die Diskussion über die gesetzlichen Grundlagen für das autonome Fahren ist erst am Anfang des öffentlichen Interesses. In diesem Zusammenhang ist es sinnvoll, die Notwendigkeit der Anpassung der bestehenden normativen Anforderungen zur funktionalen Sicherheit in die Diskussion mit einzubeziehen. Im ersten Ansatz wird in diesem Paper untersucht, ob von anderen Anwendungen mit automatisiertem Fahrbetrieb, wie er bei Schienenfahrzeugen realisiert ist, Ableitungen möglich sind. Im zweiten Ansatzpunkt wird konkret unter dem Gesichtspunkt des autonomen Fahrens zum Automobil auf die Gefahren-und Risikoanalyse, gemäß ISO 26262 Teil 3 eingegangen. Im Rahmen dieser Diskussion werden die drei Bewertungskriterien der Gefahren- und Risikoanalyse (severity, probability of exposure and controllability) im Paper beleuchtet. Es wird gezeigt, dass für autonomes Fahren ein zusätzliches Bewertungskriterium der Situationskomplexität sinnvoll ist, das das Umfeld einbezieht. Denn die Kontrollierbarkeit ist auf den Fahrer bezogen. Bei dem neuen Kriterium werden unter anderem der Einfluss durch die Verkehrsdichte sowie die Car-2-Car Kommunikation oder auch Fehler bzw. Ausfälle in der Car-2-X Kommunikation (zur Infrastruktur) berücksichtigt. KW - Automobilindustrie KW - autonomes Fahren KW - Elektrik KW - Elektromobilität KW - Fahrerassistenzsystem KW - funktionale Sicherheit KW - Infrastruktur KW - Leichtbau KW - Risikoanalyse KW - Schienenfahrzeug KW - Schienenverkehr KW - Verkehrsdichte Y1 - 2015 SP - 1 EP - 6 PB - WEKA Fachmedien CY - Haar ER - TY - JOUR A1 - Hirschberg, W. A1 - Rill, Georg A1 - Weinfurter, H. T1 - Tire model TMeasy JF - Vehicle System Dynamics N2 - This paper describes the semi-physical tire model TMeasy for vehicle dynamics and handling analyses, as it was applied in the ‘low frequency tire models’ section of the research programme tire model performance test (TMPT). Despite more or less weak testing input data, the effort for the application of TMeasy remains limited due to its consequent ‘easy to use’ orientation. One particular feature of TMeasy is the wide physical meaning of its smart parameter set, which allows to sustain the identification process even under uncertain conditions. After a general introduction, the modelling concept of TMeasy is compactly described in this paper. Taking the standard tire interface (STI) to multibody simulation system (MBS) software into account, the way to apply TMeasy is briefly shown. This includes three selected examples of application. The final comments of the authors on TMPT describe the experiences and earnings received during the participation in that programme. Y1 - 2007 U6 - https://doi.org/10.1080/00423110701776284 VL - 45 IS - sup1 SP - 101 EP - 119 PB - Taylor&Francis ER - TY - JOUR A1 - Chatzitakis, Paris A1 - Safarov, Javid A1 - Opferkuch, F. A1 - Dawoud, Belal T1 - Experimental investigation of an absorption heat pump with organic working pairs JF - Applied Thermal Engineering N2 - As part of a systematic approach towards the search for alternative absorption heat pump (AHP) working pairs that could potentially provide comparable performance to conventional ones, a previous work performed a detailed theoretical cycle analysis and simulation that revealed concrete correlations between key working fluid thermophysical properties and AHP performance indicators. Following this work, targeted combinations of two organic refrigerants, 2,2,2-trifluoroethanol (TFE) and 2,2,3,3,3-pentafluoropropanol (5FP) and two organic absorbents, 1,3-dimethyl-2-imidazolidinone (DMI) and 2-pyrrolidone (PYR) were tested in a prototype 5 kW AHP, based on a highly compact plate heat exchanger design, which has been previously introduced. The purpose of this effort was to test the findings of the previous work with experimental measurements. The working pair combinations were also subjected to vapor liquid equilibrium (VLE) and viscosity measurements, in order to determine reliable activity coefficient and improve the accuracy of the simulations. The experimental performance data agree well with the COP simulations and show to be consistent with the conclusions derived from the previous theoretical work. KW - Absorption heat pump KW - Coefficient of performance KW - FLUID KW - MIXTURES KW - Organic working pairs KW - Specific solution circulation Y1 - 2019 U6 - https://doi.org/10.1016/j.applthermaleng.2019.114311 VL - 163 IS - December PB - Elsevier ER - TY - CHAP A1 - Kaspar, Marcel A1 - Rabl, Hans-Peter T1 - Differenzierte Kohlenwasserstoffanalytik im Dieselabgas bei verschiedenen Motorbetriebszuständen T2 - 12. FAD-Konferenz „Herausforderung – Agbasnachbehandlung für Dieselmotoren“, 12, 2014, Dresden N2 - Die für Dieselfahrzeuge gesetzlich vorgeschriebenen Grenzwerte bezüglich der Schadstoffkomponenten Kohlenwasserstoffe und Kohlenmonoxid können nur durch den Einsatz eines Diesel-Oxidationskatalysators erfüllt werden. Um erhöhte Emissionen infolge eines geschädigten Katalysators zu vermeiden, gilt es, dieses abgasrelevante Bauteil auch während des Betriebes zu überwachen. Die zukünftigen gesetzlichen Anforderungen an die Überwachung erfordern ein Verfahren das eine zuverlässige und hochgenaue Diagnose zulässt. Deshalb entwickelt eine Forschungsgemeinschaft aus Industrieunternehmen und Hochschulen einen neuartigen Kohlenwasserstoffsensor zur hochgenauen Analyse von unverbrannten Kohlenwasserstoffen im Abgasstrang. Hierfür ist die Kohlenwasserstoffzusammensetzung des Dieselabgases bei verschiedenen Motorbetriebszuständen zu ermitteln. Zur differenzierten Untersuchung der Kohlenwasserstoffkomponenten wurde in der Arbeit ein Massenspektrometer eingesetzt, das mit chemischer Ionisation arbeitet. Anhand eines Abgasscreenings konnte eine Reihe von Kohlenwasserstoffen (Alkane, Alkene, Alkine, Alkadiene und aromatische Kohlenwasserstoffe) identifiziert werden, die typisch für das Dieselabgas stehen. Die Moleküle Ethin, Ethen und Propen wurden gezielt betrachtet. Die Ergebnisse zeigen, dass bei kalten Betriebsbedingungen diese drei Komponenten etwa die Hälfte der Gesamtkohlenwasserstoffkonzentration ergeben. Ein weiterer Punkt der Untersuchungen war die Diesel-Partikelfilter-Regeneration. Wie erwartet, lassen sich Kohlenwasserstoffmoleküle mit höheren Massen feststellen, die auf unverbrannten Dieselkraftstoff zurückzuführen sind. Anhand der Ergebnisse zeigte sich.dass sich das mit chemischer Ionisation arbeitende Massenspektrometer hervorragend für ein Abgasscreening eignet. Zahlreiche Kohlenwasserstoffe konnten identifiziert werden, die repräsentativ für das Dieselabgas stehen. Es sollten Moleküle bei verschiedenen Motorbetriebsbedingungen untersucht werden, die einen möglichst großen Anteil an der Gesamtkohlenwasserstoffkonzentration besitzen. Die Auswahl fiel aufgrund der gemessenen Massenspektren, vor und nach dem Diesel-Oxidationskatalysator, auf die Komponenten Ethin, Ethen und Propen. Zudem kann bei diesen Molekülen eine Masseninterferenz mit anderen Abgaskomponenten ausgeschlossen werden. Im unteren Teillastbereich und kaltem Motor machen diese Kohlenwasserstoffe bis zu 50%, gemittelt über alle Messstellen vor, im und nach dem Diesel-Oxidationskatalysator, der Gesamtkohlenwasserstoffkonzentration aus. Bei betriebswarmem Motor reduziert sich ihr Anteil auf ein Drittel Die höchste Konzentration unter den drei Komponenten besitzt dabei Propen. Mit steigendem Drehmoment nimmt der Anteil dieser drei Komponenten fortlaufend ab,was dafür spricht, dass Moleküle mit höheren Massen einen höheren Anteil einnehmen. Die Kohlenwasserstoff-Emissionen bewegen sich bei diesen Motorbetriebspunkten mit betriebswarmem Katalysator jedoch bereits bei sehr niedrigen Werten. Während der untersuchten Diesel-Partikelfilter-Regeneration mit späten Nacheinspritzungen zur Abgastemperaturerhöhung lassen sich Moleküle mit höheren Massen nachweisen. Diese sind typisch für die Reinkomponente Dieselkraftstoff. Der Anteil von Ethin, Ethen und Propen an der THC-Konzentration beträgt dann ca. 40%. KW - Alkadiene KW - Alkane KW - aromatische Kohlenwasserstoffe KW - Betriebsbedingung KW - Dieselabgas KW - Dieselkraftstoff KW - DIESELMOTOR KW - Ethen KW - Ethin KW - Ionisation KW - Kohlenmonoxid KW - Kohlenwasserstoffe KW - Massenspektrometer KW - Oxidationskatalysator KW - Propen KW - Schadstoff KW - Überwachung Y1 - 2014 SP - 45 EP - 59 PB - Förderkreis Abgasnachbehandlungstechnologien für Verbrennungskraftmaschinen (FAD) e.V. ER - TY - CHAP A1 - Boccara, R. A1 - Diamantidis, Dimitris A1 - Sýkora, Miroslav T1 - Optimal design of ground-mounted solar systems T2 - Safety and reliability : methodology and applications : proceedings of the European Safety and Reliability Conference, ESREL 2014, Wrocław, Poland, 14-18 September 2014 N2 - Solar energy represents a clean, natural and sustainable source of energy. Solar photovoltaic panels can be installed on roofs of structures or in the ground. This contribution focusses on ground-mounted systems, which are presently widely implemented. At present limited guidelines on the design of solar ground-mounted structures are available. Usually standards for the design of normal buildings are applied. However, the design of ground-mounted structures significantly differs from common structural design by: (1) a lower design lifetime (20-25 years) is accepted; (2) failure is not associated with the loss of human life; (3) resistance uncertainties need due attention; (4) uplift wind forces dominating structural reliability are associated with a large scatter. That is why the reliability analysis and optimal design of ground-mounted solar systems is investigated herein. The failure costs and especially their ratio to the initial costs are analyzed considering the data provided from the industry. Probabilistic reliability analyses are carried out and optimum design levels are computed for representative cost ratios. The optimal target reliability depends on the ratio between failure and initial costs; reliability index of 3.5 corresponds to a reasonable cost ratio of 10. KW - Dach KW - Montagesystem KW - Montiergerät KW - nachhaltiges Sourcing KW - Solarenergie KW - Solarmodul KW - Windkraft (Energiequelle) Y1 - 2014 SN - 978-1-138-02681-0 SP - 2175 EP - 2181 PB - CRC Press CY - Boca Raton ER - TY - CHAP A1 - Kaspar, M. A1 - Rabl, Hans-Peter A1 - Mayer, W. T1 - Differenzierte Kohlenwasserstoffanalytik im Dieselabgas bei verschiedenen Motorbetriebszustaenden : Detailed hydrocarbon analysis of diesel exhaust gas at different engine operating conditions T2 - 12. FAD-Konferenz „Herausforderung – Agbasnachbehandlung für Dieselmotoren“, 12, 2014, Dresden N2 - Beitrag und Praesentationsmaterial eines Vortrags ueber differenzierende Kohlenwasserstoffanalytik im Dieselabgas bei verschiedenen Motorbetriebszustaenden. Mit einem neu entwickelten, hochgenauen HC-Sensor werden unverbrannte HC im Abgas untersucht. Die differenzierende Untersuchung erfolgt an einem Massenspektrometer, das mit chemischer Ionisation arbeitet. Die Molekuele Ethin, Ethen und Propen wurden gezielt betrachtet. Es zeigt sich, dass bei kalten Betriebsbedingungen diese drei Komponenten etwa die Haelfte der gesamten HC Konzentration ergeben. Ein weiterer Punkt ist die Regeneration des Dieselpartikelfilters. KW - ABGASKONZENTRATION KW - ABGASTRENNUNG KW - ABGASZUSAMMENSETZUNG KW - DIESELMOTOR KW - EINSTUFENFILTER KW - GASFILTER KW - HAUPTSTROMFILTER KW - KATALYTISCHE ABGASNACHVERBRENNUNG KW - KATALYTISCHER REAKTOR KW - KOHLENWASSERSTOFF (ABGAS) KW - OXIDATIONSKATALYSATORANLAGE KW - Partikelfilter KW - PERIODISCH ZU REINIGENDER FILTER KW - R4-MOTOR KW - UEBERDRUCKFILTER Y1 - 2014 SP - 1 EP - 35 PB - Förderkreis Abgasnachbehandlungstechnologien für Verbrennungskraftmaschinen (FAD) e.V. CY - Dresden ER - TY - CHAP A1 - Kaspar, Marcel A1 - Kleiner, Florian A1 - Rabl, Hans-Peter T1 - Online-Analyse und Optimierung der Schmierölverdünnung bei direkteinspritzenden Ottomotoren T2 - 7. VDI-Fachtagung mit Fachausstellung Zylinderlaufbahn, Kolben, Pleuel : Baden-Baden, 03. und 04. Juni 2014 N2 - Bei Ottomotoren mit Direkteinspritzung besteht beim Kaltstart, den Warmlaufphasen und auch durch den Einfluss anderer Parameter wie z. B. des Einspritzzeitpunkts oder des Einspritzdrucks die Problematik, dass Kraftstoff an die Zylinderlaufbahn aufgetragen wird und sich mit dem Motoröl vermischen kann. Eine Verstärkung dieses Kraftstoffauftrags ist unter anderem der Verschiebung der Motorbetriebspunkte zu höheren Mitteldrücken und damit einem Wirkungsgrad optimaleren Betrieb geschuldet. Eine Veränderung der physikalischen und chemischen Eigenschaften des Motoröls durch die Verdünnung mit Kraftstoff ist die Folge. Durch die Verringerung der Viskosität des Motoröls kann es zu einer verminderten Schmierwirkung des Öls kommen, die im schlimmsten Fall zur Schädigung des Motors führt. Existierende Offline-Analysemethoden die zeitintensive Laboranalysen nach sich ziehen, als auch Online-Messverfahren die nicht den technischen Anforderungen hinsichtlich Genauigkeit und einer kurzen Messdauer entsprechen, stellen aktuell die einzigen Messmethoden zur Bestimmung der Schmierölverdünnung dar. Durch neue Entwicklungstrends bei Ottomotoren ist es jedoch unbedingt notwendig, die Mechanismen des Kraftstoffein- und -austrags in das und aus dem Motoröl genauer zu untersuchen. Mit der an der OTH Regensburg neu entwickelten Messtechnik wurde eine Vorgehensweise erarbeitet, mit der die zeitlichen Verläufe des Kraftstoffein- und -austragsverhaltens bei Ottomotoren quantitativ in kurzer Zeit bestimmt und optimiert werden können. Especially at cold start and the warm-up operation GDI engines have an issue with oil dilution. Parameters such as injection timing and injection pressure impact the entry of fuel in the engine oil as well. With the adjustment of engine operating points to higher mean effective pressures resulting in downsizing concepts also an additional increase of fuel entry occurs. Fuel gets into the oil pan and is mixed with the engine oil so that the physical and chemical properties of the engine oil are changed. With the reduction of engine oil viscosity due to fuel entry a reduced lubricating effect can be caused. In the worst case damage to the engine occurs, To determine oil dilution online and offline measurement methods exist. A rather long analysis time in the laboratory is a disadvantage of the offline methods. Online methods are not correlating with technical requirements in terms of accuracy and a short measurement time. New trends in the development of gasoline engines require investigations of fuel in oil sorption and desorption processes. A new measurement technique which is developed at the OTH Regensburg enables to determine quantitative fuel in oil sorption and desorption processes. With this technique a procedure was generated to measure the oil dilution at gasoline engines and optimize them in a short time. KW - Direkteinspritzerottomotor KW - Direkteinspritzung KW - Kaltstart KW - Kraftstoff KW - Motoröl KW - Online-Analyse KW - Online-Messverfahren KW - Ottomotor KW - Viskositätsverringerung Y1 - 2014 SN - 978-3-18-092230-0 SP - 65 EP - 77 PB - VDI-Verlag CY - Düsseldorf ER - TY - JOUR A1 - Lermer, Josef T1 - Optimierter Antriebsstrang und neuartiges Differenzial für einen Formula-Student-Rennwagen JF - ATZ-Extra Y1 - 2015 U6 - https://doi.org/10.1007/s35778-015-0071-4 VL - 20 IS - Suppl 5 SP - 34 EP - 39 PB - Springer Fachmedien GmbH ER - TY - JOUR A1 - Küpper, Carsten A1 - Artmann, Christina A1 - Pischinger, Stefan A1 - Rabl, Hans-Peter T1 - Schmierölverdünnung von direkteinspritzenden Ottomotoren unter Kaltstartrandbedingungen JF - MTZ - Motortechnische Zeitschrift Y1 - 2013 U6 - https://doi.org/10.1007/s35146-013-0208-1 VL - 74 IS - 9 SP - 710 EP - 715 PB - Springer Vieweg CY - Wiesbaden ER - TY - JOUR A1 - Küpper, Carsten A1 - Artmann, Christina A1 - Pischinger, Stefan A1 - Rabl, Hans-Peter T1 - Lube-Oil Dilution of GDI Engines with Ethanol Fuels JF - Auto Tech Review KW - Cold Start KW - Injection Strategy KW - Fuel Mass KW - Mixture Formation KW - Fuel Blend Y1 - 2014 U6 - https://doi.org/10.1365/s40112-014-0570-5 VL - 3 IS - 3 SP - 30 EP - 35 PB - Springer India CY - New Delhi ER -