TY - CHAP A1 - Zenger, Gerhard A1 - Kenner, Susanne A1 - Volbert, Klaus A1 - Waas, Thomas A1 - Kucera, Markus T1 - Acquiring energy data from a medium-voltage grid for future smart grid solutions: A practical smart grid application example realized by use of cellular communication networks of the 2nd and 3rd generation T2 - Proceedings of the 11th Workshop on Intelligent Solutions in Embedded Systems (WISES), 10-11 Sept. 2013, Pilsen, Czech Republic N2 - In this paper we present a practical example of the use of Cellular Communication standards like GPRS and UMTS in a Smart Grid Application. For a more detailed view we demonstrate a possible implementation of Cellular Communication Technologies in a data acquisition application for the collection of energy indicators in a medium-voltage grid. Furthermore, we show a technical overview of relevant and common mobile communication standards available in Germany. The included theoretical examples, Smart Grid scenarios, presented data and results are based on a research project for intelligent power regulation in medium-voltage grids performed in Regensburg (Germany). It is a joint project' of the University of Applied Sciences Regensburg together with a local energy provider and a manufacturer for distribution network systems. KW - Mobile communication KW - Medium voltage KW - Standards KW - Smart grids KW - Feeds KW - Ground penetrating radar Y1 - 2013 UR - https://ieeexplore.ieee.org/document/6664954 SN - 978-3-00-042899-9 SP - 1 EP - 8 PB - IEEE ER - TY - CHAP A1 - Miedl, Christian A1 - Braun, Jürgen T1 - Powertrain and electric system design of a 800-volt all-electric car T2 - European Conference on Nanoelectronics and Embedded Systems for Electric Mobility, eMotion in Smart Cities, 24.-28. September, 2012, Bologna, Italy Y1 - 2012 ER - TY - JOUR A1 - Haumer, Anton A1 - Kral, Christian A1 - Vukovic, Vladimir A1 - David, Alexander A1 - Hettfleisch, Christian A1 - Huzsvar, Attila T1 - A Parametrization Scheme for High Performance Thermal Models of Electric Machines using Modelica JF - IFAC Proceedings Volumes N2 - Thermal models offer great advantages for enhancement of design, protection and control of electric machines. Detailed thermal models take a great number of time constants into account and provide accurate prediction of the temperatures. However, to parameterize such models detailed geometric data are needed. Whenever such detailed information is not available, or the performance of the detailed models is not satisfying, simplified thermal models as described in this paper are advantageous. The calculation of parameters is described in detail, in order to achieve best accordance with temperatures obtained from measurements or from simulations with detailed thermal models. Thermal resistances are calculated from end temperatures of a test run with constant load (and known losses). Thermal capacitances are obtained using optimization to minimize deviation of simulated and measured temperatures during the whole test run. The thermal model of an asynchronous induction machine with squirrel cage is coupled with an electrical model of the drive. For validation, simulation results of an optimally parameterized simplified model are compared with temperatures obtained by simulation of a detailed thermal model, which in turn has been validated against measurement results, both for continuous duty S1 and intermittent duty S6 (6 minutes no-load followed by 4 minutes of 140% nominal load). The deviations are not more than 4 K which is quite satisfying. KW - Electric machines KW - Induction machines KW - Thermal models KW - Model reduction KW - Parameter identification KW - Parameter optimization Y1 - 2012 U6 - https://doi.org/10.3182/20120215-3-AT-3016.00187 SN - 1474-6670 VL - 45 IS - 2 SP - 1058 EP - 1062 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Bogomolov, Maxim A1 - Kral, Christian A1 - Haumer, Anton A1 - Lomonova, Elena T1 - Modeling of permanent magnet synchronous machine with fractional slot windings T2 - Proceedings IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society ; Ecole de Technologie Superieure de Montreal, Universite du Quebec Montreal, Canada 25 - 28 October, 2012 N2 - This paper focuses on simulation of permanent magnet synchronous machine (PMSM) with fractional-slot windings (FSW) in Modelica. Modeling of the electrical machines with object-oriented approach is shortly described, and a new Modelica library for simulation of electrical machines is introduced. The results of simulation of PMSMs with fractional slot windings are presented and explained. Special attention is paid to the higher harmonics and subharmonics produced by the winding and their influence on machine operation. KW - Concentrated KW - fractional slot KW - harmonics KW - Modelica KW - permanent magnet KW - subharmonics KW - synchronous machines KW - Torque KW - windings Y1 - 2012 SN - 978-1-4673-2421-2 SN - 978-1-4673-2419-9 SN - 978-1-4673-2420-5 U6 - https://doi.org/10.1109/IECON.2012.6388912 SN - 1553-572X SP - 1894 EP - 1899 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Haumer, Anton A1 - Kral, Christian ED - Otter, Martin ED - Zimmer, Dirk T1 - Motor Management of Permanent Magnet Synchronous Machines T2 - Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany N2 - Two state-of-the-art machine designs are mainly used in recent electric and hybrid electric vehicles: asynchronous induction machines with squirrel cage which are robust but need a current component to excite the magnetic field; and permanent magnet synchronous machines which rely on somehow more sensible parts but the magnets are able to excite a magnetic field without current. However; if speed gets high enough to reach the field weakening range; for both machine the field oriented control has to prescribe a field current sufficient to reduce the field not to exceed the voltage limits of the stator circuit. Especially for the permanent magnet synchronous machine this paper investigates whether it is possible to determine an optimal field current for every operation point to minimize either total current consumption or losses. KW - Field Oriented Control KW - Optimization of Field Current KW - permanent magnet synchronous machine Y1 - 2012 SN - 978-91-7519-826-2 U6 - https://doi.org/10.3384/ecp12076159 SN - 1650-3686 SN - 1650-3740 SP - 159 EP - 166 PB - Linköping University Electronic Press ER - TY - CHAP A1 - Kral, Christian A1 - Haumer, Anton A1 - Bogomolov, Maxim A1 - Lomonova, Elena T1 - Harmonic wave model of a permanent magnet synchronous machine for modeling partial demagnetization under short circuit conditions T2 - 2012 XXth International Conference on Electrical Machines (ICEM 2012) ; Marseille, France, 2 - 5 September 2012 N2 - This paper proposes a multi domain physical model of permanent magnet synchronous machines, considering electrical, magnetic, thermal and mechanical effects. For each component of the model, the main wave as well as lower and higher harmonic wave components of the magnetic flux and the magnetic potential difference may be considered. The permanent magnets are modeled as discrete azimuthal segments in order to consider possible partial demagnetization effects. For each magnet segment a linearized temperature dependent B-H curve is considered. The main advantage of the presented model is that time transient operational behavior of a permanent magnet synchronous machine can be considered under various electrical, magnetic, thermal and mechanical conditions. The electromagnetic condition of surface magnet machine is compared with finite element analysis. KW - demagnetization KW - harmonic analysis KW - magnetic fields KW - magnetic flux KW - magnetic potential difference KW - permanent magnet synchronous machine KW - reluctance KW - segmentation KW - temperature Y1 - 2012 SN - 978-1-4673-0142-8 U6 - https://doi.org/10.1109/ICElMach.2012.6349880 SP - 295 EP - 301 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Kral, Christian A1 - Haumer, Anton A1 - Lee, Sang Bin T1 - Robust thermal model for the estimation of rotor cage and stator winding temperatures of induction machines T2 - 2012 XXth International Conference on Electrical Machines ; Marseille, France, 02.- 05.09.2012 N2 - In this paper a new model for the estimation of the stator winding and rotor cage temperatures of induction machines is presented. This model can be used in series applications of machines operated under dynamic load conditions where stator and rotor temperature shall be monitored. The proposed model relies on a simplified lumped element thermal equivalent circuit model where the stator core temperature serves as input quantity. The great advantage of this model is that it covers ambient and cooling conditions inherently. This leads to great simplicity and robustness. The parametrization and validation of the model through experimental data is presented. Advantages, drawbacks and possible implementations are discussed. KW - asynchronous machines KW - Cooling KW - dynamic load KW - equivalent circuits KW - lumped element thermal equivalent circuit model KW - Rotors KW - squirrel cage induction machine KW - stators KW - temperature estimation Y1 - 2012 SN - 978-1-4673-0142-8 SN - 978-1-4673-0143-5 SN - 978-1-4673-0141-1 U6 - https://doi.org/10.1109/ICElMach.2012.6350127 SP - 1810 EP - 1816 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Kral, Christian A1 - Haumer, Anton A1 - Lee, Sang Bin T1 - Innovative thermal model for the estimation of permanent magnet and stator winding temperatures T2 - 2012 IEEE Energy Conversion Congress and Exposition (ECCE 2012) ; Raleigh, NC, USA 15.09.-20.09.2012 N2 - In this paper an innovative thermal model for the determination of the temperatures of the permanent magnets and stator windings is presented. This model relies on one temperature sensor located in the stator core of the machine. The estimated stator winding and permanent magnet temperatures are determined by a simplified thermal lumped element network model with only two time constants. Due to the structure of the model and the measured stator core temperature the proposed thermal model is very robust. Distortion of the cooling circuit are inherently sensed such that the model can be used for the online prediction of temperatures. Experimental results based on an interior permanent magnet synchronous machine are presented to validate the presented model. KW - Cooling KW - dynamic load KW - lumped element thermal equivalent circuit model KW - permanent magnet machines KW - permanent magnet synchronous machine KW - stators KW - synchronous machines KW - temperature estimation KW - temperature sensors KW - variable speed Y1 - 2012 SN - 978-1-4673-0803-8 SN - 978-1-4673-0802-1 SN - 978-1-4673-0801-4 U6 - https://doi.org/10.1109/ECCE.2012.6342386 SN - 2329-3721 SN - 2329-3748 SP - 2704 EP - 2711 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Brückl, Oliver A1 - Krpal, Ondrej A1 - Riepl, Markus T1 - Influence of wind and solar energy on the frequency of switching operations of On-Load Tap-Changers (OLTC) BT - Electric Power Engineering T2 - Proceedings of the 13th International Scientific Conference Electric Power Engineering 2012, EPE 2012; Vol. 2 Y1 - 2012 SP - 719 EP - 722 PB - EPE CY - Brno, Czech Republic ER - TY - CHAP A1 - Nonn, Aida A1 - Kalwa, Christoph T1 - Simulation of ductile crack propagation in high-strength pipeline steel using damage models T2 - 9th International Pipeline Conference 2012 (IPC 2012), Calgary, Canada N2 - The performance of engineering design of high-strength steel pipelines has revealed the necessity to revise current design procedures. Therefore, an improved and detailed comprehension of fracture mechanisms and development of failure prediction tools are required in order to derive new design criteria. In last decades the most successful failure prediction tools for steel structures subjected to various type of loading can be encountered in the field of damage mechanics. This paper aims to describe ductile fracture behavior of high-strength steel pipelines by applying three different damage models, Gurson-Tvergaard-Needelman (GTN), Fracture Locus Curve (FLC) and Cohesive Zone (CZ). These models are evaluated regarding their capability to estimate ductile crack propagation in laboratory specimens and linepipe components without adjusting the calibrated parameters. It can be shown that appropriate parameter sets can be identified to reproduce load-deformation and fracture resistance curves accurately. The strain rate effect on the fracture behavior is examined by dynamic tests on the BDWT specimens. Finally, the shortcomings of the applied models are pointed out with the reference to possible extensions and modifications. Y1 - 2012 U6 - https://doi.org/10.1115/IPC2012-90653 ER - TY - CHAP A1 - Kofiani, Kirki A1 - Nonn, Aida A1 - Wierzbicki, Tomasz A1 - Kalwa, Christoph A1 - Walters, Carey T1 - Experiments and fracture modeling of high-strength pipelines for high and low stress triaxiality T2 - 22nd International Society of Offshore and Polar Engineering 2012 (ISOPE 2012), Rhodes, Greece, June 2012 N2 - This paper provides results from a comprehensive study on mechanical characterization of high-strength pipeline steel, grade X100 using experimental and numerical methods. The material was characterized for anisotropic plasticity, fracture initiation for various states of stress, (pre-cracked) fracture toughness and uncracked ductility. The experimental program included tests on flat butterfly-shaped, central hole, notched and circular disk specimens for low stress triaxiality levels; as well as tests on round notched bar specimens and SENT fracture mechanics tests, for high values of stress triaxiality. This program covered a wide range of stress conditions and demonstrated its effect on the material resistance. Parallel to the experimental study, detailed numerical investigations were carried out to simulate all different experimental tests. Using an inverse method, a 3-parameter calibration was performed on the Modified Mohr-Coulomb (MMC) fracture model. Subsequently, the predictive capabilities of the MMC were evaluated by the comparison to the fracture toughness tests results, used extensively in the pipeline industry. The capabilities of the MIT fracture model have been demonstrated on an example of high strength offshore steel, X100. The outcome of this study was not only to provide, the overall characterization of the fracture behavior of this material as an example, but also to present the methodology on how to use the MMC model as a practical tool in pipeline design. Y1 - 2012 ER - TY - CHAP A1 - Nonn, Aida A1 - Kalwa, Christoph T1 - Failure modeling of pipeline X100 Material in temperature transition region T2 - 22nd International Society of Offshore and Polar Engineering 2012 (ISOPE 2012), Rhodes, Greece N2 - This paper focuses on the characterization of the fracture performance of X100 material in transition temperature region using both experimental and numerical methods. The ductile fracture has been analyzed using tests on round notched bar specimens and standard fracture mechanics tests performed at room temperature. In previous publications the damage model Gurson-Tvergaard-Needleman (GTN) has been applied and verified by existing experimental data to describe ductile fracture behavior. The brittle fracture and the fracture in temperature transition region have been studied by means of deep and shallow notched SENB specimens at two different temperatures T=- 80°C and -40°C. Besides elastic-plastic analyses to quantify constraint levels for different initial crack configurations at the onset of cleavage fracture, the brittle failure has been described using modified Beremin model. The influence of the stable crack growth on the cleavage failure probability in temperature transition region has been captured by coupling the ductile fracture model (GTN) with the modified Beremin model. Finally, examples have been presented for the practical application of the numerical results on the fracture assessment of the flawed high-strength pipelines. Y1 - 2012 ER - TY - JOUR A1 - Ostermeier, Daniel A1 - Mottok, Jürgen A1 - Knorr, Christine A1 - Huber, Michael ED - Mottok, Jürgen ED - Ziemann, Olaf T1 - Competence Atlas for Save and Green Road Vehicles in the Electro Mobility Cluster Regensburg JF - Applied Research Conference 2012 (ARC 2012) 25./26. June 2012, Nuremberg Y1 - 2012 SP - 86 EP - 92 ER - TY - CHAP A1 - Mottok, Jürgen T1 - Migration path for secure and economic smart power grid devices with transitional smart metering support T2 - 2nd Applied Research Conference 2012 (ARC 2012), 25./26. June 2012, Nuremberg Y1 - 2012 SP - 64 EP - 70 ER - TY - CHAP A1 - Nick, Matthias A1 - Schorer, Michael A1 - Mottok, Jürgen ED - Mottok, Jürgen ED - Ziemann, Olaf T1 - Feasibility Study of a Build System Performing Automated Builds Based on Model-Based Build Descriptions T2 - 2nd Applied Research Conference 2012 (ARC 2012), 25./26. June 2012, Nuremberg Y1 - 2012 SP - 71 EP - 75 PB - Shaker CY - Aachen ER - TY - RPRT ED - Neuleitner, Nikolaus ED - Steffens, Oliver T1 - Energienutzungsplan für die Gemeinde Sinzing BT - Phase I. Bestandsaufnahme. Ergebnisbericht 1 (12/2011) Y1 - 2011 ER - TY - CHAP A1 - Bäuml, T. A1 - Haumer, Anton A1 - Kapeller, H. A1 - Starzinger, J. A1 - Farzi, P. T1 - Impact of inverter pulse inhibition on the high-voltage supply system of an electric vehicle — A simulative approach T2 - 2011 IEEE Vehicle Power and Propulsion Conference (VPPC 2011) : Powering sustainable transportation ; Chicago, Illinois, USA, 06. - 09.09.2011 N2 - This paper deals with a simulative approach for investigating the impact of inverter pulse inhibition during field weakening operation of permanent magnet synchronous machines and asynchronous induction machines. The modelling and simulation language Modelica is used to design models for the vehicle, the electric machine and the inverter in different abstraction levels. It is shown that when using a permanent magnet synchronous machine, a sudden breakdown of the field weakening current causes induction of high voltages in the stator windings. Hence, the electric system of the vehicle has to be protected against the resulting high currents. Furthermore precautions have to be taken to avoid dangerous driving conditions because of high braking torques in an inverter fault operation mode. In the case of the asynchronous induction machine an inverter pulse inhibition poses no big problem, neither for the electric system of the vehicle, nor the driver. KW - asynchronous machines KW - Connectors KW - electric vehicles KW - Inverters KW - invertors KW - Mathematical model KW - Object oriented modeling KW - permanent magnet machines KW - power engineering computing KW - Rotors KW - synchronous machines KW - Torque KW - Vehicles Y1 - 2011 SN - 978-1-61284-248-6 SN - 978-1-61284-247-9 SN - 978-1-61284-246-2 U6 - https://doi.org/10.1109/VPPC.2011.6043159 SP - 1 EP - 5 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Hong, Jongman A1 - Hyun, Doosoo A1 - Kang, Tae-june A1 - Lee, Sang Bin A1 - Kral, Christian A1 - Haumer, Anton T1 - Detection and classification of rotor demagnetization and eccentricity faults for PM synchronous motors T2 - 2011 IEEE Energy Conversion Congress and Exposition (ECCE 2011) : Energy conversion innovation for a clean energy future ; Phoenix, Arizona, USA, 17.-22.09.2011 N2 - Condition monitoring of rotor problems such as demagnetization and eccentricity in permanent magnet synchronous motors (PMSM) is essential for guaranteeing high motor performance, efficiency, and reliability. However, there are many limitations to the off-line and on-line methods currently used for PMSM rotor quality assessment. In this paper, an inverter-embedded technique for automated detection and classification of PMSM rotor faults is proposed as an alternative. The main concept is to use the inverter to perform a test whenever the motor is stopped, to detect rotor faults independent of operating conditions or load torque oscillations, which is not possible with motor current signature analysis (MCSA). The d-axis is excited with a dc+ac signal, and the variation in the inductance pattern due to the change in the degree of magnetic saturation caused by demagnetization or eccentricity is observed for fault detection. An experimental study on a 7.5kW PMSM verifies that demagnetization and eccentricity can be detected and classified independent of the load with high sensitivity. KW - AC Machine KW - Condition Monitoring KW - d-axis Inductance KW - Demagnetization KW - Eccentricity KW - fault diagnosis KW - invertors KW - Magnetic Saturation KW - Permanent Magnet (PM) KW - permanent magnet motors KW - Synchronous Motor (SM) KW - synchronous motors Y1 - 2011 SN - 978-1-4577-0542-7 SN - 978-1-4577-0541-0 SN - 978-1-4577-0540-3 U6 - https://doi.org/10.1109/ECCE.2011.6064103 SN - 2329-3721 SN - 2329-3748 SP - 2512 EP - 2519 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Hong, Jongman A1 - Lee, Sang Bin A1 - Kral, Christian A1 - Haumer, Anton T1 - Detection of airgap eccentricity for permanent magnet synchronous motors based on the d-axis inductance T2 - 8th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics & Drives (SDEMPED), 2011 // 05. - 08.09.2011, Bologna, Italy N2 - The majority of the work performed for detecting eccentricity faults for permanent magnet synchronous motors (PMSM) focus on motor current signature analysis (MCSA), as it provides continuous on-line monitoring with existing current sensors. However, MCSA cannot be applied under nonstationary conditions and cannot distinguish faults with load torque oscillations, which are limitations for many PMSM drive applications. In this paper, it is shown that the d-axis inductance, L d , decreases with increase in the severity of eccentricity due to the change in the degree of magnetic saturation, and it is proposed as a new fault indicator. The inverter can be used to perform a standstill test automatically whenever the motor is stopped, to measure L d for eccentricity testing independent of load variations or oscillations, which is not possible with MCSA. An FE and experimental study on a 10hp PMSM verifies that eccentricity can be detected independent of the load with high sensitivity and reliability. KW - Airgap Eccentricity KW - Condition Monitoring KW - Diagnostics KW - fault location KW - inductance KW - load (electric) KW - machine testing KW - Magnetic Saturation KW - Motor Current Signature Analysis (MCSA) KW - permanent magnet motors KW - Permanent Magnet Synchronous Motor KW - synchronous motor protection Y1 - 2011 SN - 978-1-4244-9301-2 SN - 978-1-4244-9303-6 U6 - https://doi.org/10.1109/DEMPED.2011.6063651 SP - 378 EP - 384 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Haumer, Anton A1 - Kral, Christian T1 - Modeling a Mains connected PWM Converter with Voltage-Oriented Control T2 - Proceedings of the 8th International Modelica Conference, Technical Univeristy, Dresden, Germany, 20.-22.03.2011 N2 - The majority of industrial controlled induction machine drives are connected to the mains via a diode bridge. However; if reduction of harmonic currents and / or regenerative operation is desired; replacing the diode bridge by an active front-end (AFE) is required. This paper describes two models of an AFE: a power balance model disregarding switching effects; and an ideal switching model of a pulse width modulation (PWM) converter. Both models are controlled utilizing space phasors in a voltage oriented reference frame. Voltage oriented control (VOC) of the mains converter can be compared with field oriented control (FOC) of a machine converter. Design and parametrization of the main parts—synchronization with mains voltage; current controller and DC voltage controller—are described in detail. Additionally; simulation results proving the implementation and demonstrating possible investigations as well as an outlook on further enhancements are presented. KW - Active Front-End KW - PWM Converter KW - Voltage-Oriented Control Y1 - 2011 U6 - https://doi.org/10.3384/ecp11063388 SP - 388 EP - 397 PB - Linköping University Electronic Press ER -