TY - RPRT A1 - Rank, Daniel A1 - Heberl, Michael A1 - Sterner, Michael T1 - Die CO2-Bilanz der OTH [Ostbayerischen Technische Hochschule Regenburg] BT - Tool für Hochschulen und Firmen Y1 - 2020 UR - https://sae58cb7e2208a3d2.jimcontent.com/download/version/1613400473/module/9240277976/name/1. Sitzung AG_Präsentation Prof. Sterner-1.pdf ER - TY - GEN A1 - Sterner, Michael A1 - Heberl, Michael T1 - The ORBIT-Project: Biological methanation in a trickle-bed reactor - key results and next steps T2 - 5th Nuremberg Workshop on Methanation and 2nd Generation, Nürnberg Friedrich-Alexander-Universität, 28.05.2021 KW - biologische Methanisierung KW - Archaeen KW - Power-to-Gas KW - Erneuerbare Energien KW - Rieselbett Bioreaktor Y1 - 2021 ER - TY - GEN A1 - Altmann, Robert A1 - Gebhard, Jürgen T1 - Phänomenologische Untersuchung des Einspritzprozesses eines Injektors aus dem Off-Highway-Segment mit Diesel- und Rapsölkraftstoff T2 - 16. Internationaler Fachkongress "Kraftstoffe der Zukunft 2019", Berlin Y1 - 2019 ER - TY - CHAP A1 - Grabner, Christian A1 - Gragger, Johannes V. A1 - Kapeller, Hansjörg A1 - Haumer, Anton A1 - Kral, Christian ED - Ao, Sio-Iong ED - Gelman, Len T1 - Sensorless PM-Drive Aspects T2 - Electronic Engineering and Computing Technology N2 - The development procedure of permanent magnet drives for sensor less operation beginning from standstill under overload conditions has to consider different design aspects coevally. First, the robust rotor position sensing by test signal enforces a design with a strongly different behavior of the spatial dq-oriented differential inductance values. Therefore, the interior rotor magnet array arrangement is from principle predestinated for the controlled sensor less mode including standstill. Fortunately, in order to reduce costs, the distinct reluctance torque capability of such interior magnet arrangement is additionally used for a significantly increased torque by applying a pre-oriented stator current space vectors within the quasi-steady control. KW - inductance modeling KW - machine design KW - nonlinear saturation effects KW - Sensorless vector control Y1 - 2010 SN - 978-90-481-8775-1 SN - 978-90-481-8776-8 U6 - https://doi.org/10.1007/978-90-481-8776-8_3 SP - 25 EP - 35 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Gamisch, Bernd A1 - Ettengruber, Stefan A1 - Gaderer, Matthias A1 - Dawoud, Belal T1 - Dynamic simulation of isothermal and non-isothermal reduction and oxidation reactions of iron oxide for a hydrogen storage process JF - Renewable and Sustainable Energy N2 - This work aims first to develop a dynamic lumped model for the isothermal reactions of hydrogen/steam with a single iron oxide/iron pellet inside a tubular reactor and to validate the model results against the experimental reaction kinetic data with the help of our STA device. To describe the temporal change in mass, and consequently, the temporal heat of reaction, the shrinking core model, based on the geometrical contracting sphere, is applied. It turned out that, the simulation model can reproduce the experimental, temporal concentration and temperature-dependent conversion rates with a maximum deviation of 4.6% during the oxidation reactions and 3.1% during the reduction reactions. In addition, a measured isothermal storage process comprising one reduction and one oxidation phase with a holding phase in between on a single reacting pellet could be reproduced with a maximum absolute deviation in the conversion rate of 1.5%. Moreover, a lumped, non-isothermal simulation model for a pelletized tubular redox-reactor including 2kg of iron oxide pellets has been established, in which the heat of reaction, heat transfer to the ambient and heat transfer between the solid and gas phases are considered. The temporal courses of the outlet gas concentration as well as the temperatures of the gas stream and the solid material at a constant input gas flow rate and a constant reacting gas inlet concentration but different input gas temperatures are estimated. Because of the endothermic nature of the reduction reaction, the inlet reacting gas temperature shall be kept high to prevent the severe temperature drop in the solid phase and, consequently, the significant reduction of the reaction rate. Contrary to that, the oxidation process requires lower input gas temperatures to avoid the excessive overheating of the reaction mass and, consequently, the sintering of the reacting pellets. Finally, five of the previous reactors have been connected in series to explore the influence of the changing inlet gas temperatures and concentrations on the dynamic performance of each storage mass. KW - hydrogen storage KW - iron/iron oxide KW - redox reactions KW - lumped model KW - isothermal reactions KW - non-isothermal reactions KW - kinetics of reactions KW - Aspen Custom Modeler Y1 - 2023 U6 - https://doi.org/10.55092/rse20230004 N1 - Corresponding author: Belal Dawoud VL - 1 IS - 1 PB - ELSP, International Open Science Platform ER - TY - JOUR A1 - Walter, Stefanie A1 - Schwanzer, Peter A1 - Hagen, Gunter A1 - Rabl, Hans-Peter A1 - Dietrich, Markus A1 - Moos, Ralf T1 - Soot Monitoring of Gasoline Particulate Filters Using a Radio-Frequency-Based Sensor JF - Sensors N2 - Owing to increasingly stringent emission limits, particulate filters have become mandatory for gasoline-engine vehicles. Monitoring their soot loading is necessary for error-free operation. The state-of-the-art differential pressure sensors suffer from inaccuracies due to small amounts of stored soot combined with exhaust gas conditions that lead to partial regeneration. As an alternative approach, radio-frequency-based (RF) sensors can accurately measure the soot loading, even under these conditions, by detecting soot through its dielectric properties. However, they face a different challenge as their sensitivity may depend on the engine operation conditions during soot formation. In this article, this influence is evaluated in more detail. Various soot samples were generated on an engine test bench. Their dielectric properties were measured using the microwave cavity perturbation (MCP) method and compared with the corresponding sensitivity of the RF sensor determined on a lab test bench. Both showed similar behavior. The values for the soot samples themselves, however, differed significantly from each other. A way to correct for this cross-sensitivity was found in the influence of exhaust gas humidity on the RF sensor, which can be correlated with the engine load. By evaluating this influence during significant humidity changes, such as fuel cuts, it could be used to correct the influence of the engineon the RF sensor. KW - dielectric properties KW - engine test bench KW - gasoline particulate filter (GPF) KW - microwave cavity perturbation KW - radio-frequency (RF) KW - soot mass determination Y1 - 2023 U6 - https://doi.org/10.3390/s23187861 SN - 1424-8220 N1 - This research work was funded by the Bavarian Research Foundation (Bayerische Forschungsstiftung, BFS) as part of the project “Load Sensor for GPF” (AZ-1288-17). VL - 23 IS - 18 SP - 1 EP - 19 PB - MDPI ER - TY - JOUR A1 - Rill, Georg A1 - Schuderer, Matthias T1 - A Second-Order Dynamic Friction Model Compared to Commercial Stick–Slip Models JF - Modelling N2 - Friction has long been an important issue in multibody dynamics. Static friction models apply appropriate regularization techniques to convert the stick inequality and the non-smooth stick–slip transition of Coulomb’s approach into a continuous and smooth function of the sliding velocity. However, a regularized friction force is not able to maintain long-term stick. That is why dynamic friction models were developed in recent decades. The friction force depends herein not only on the sliding velocity but also on internal states. The probably best-known representative, the LuGre friction model, is based on a fictitious bristle but realizes a too-simple approximation. The recently published second-order dynamic friction model describes the dynamics of a fictitious bristle more accurately. It is based on a regularized friction force characteristic, which is continuous and smooth but can maintain long-term stick due to an appropriate shift in the regularization. Its performance is compared here to stick–slip friction models, developed and launched not long ago by commercial multibody software packages. The results obtained by a virtual friction test-bench and by a more practical festoon cable system are very promising. Thus, the second-order dynamic friction model may serve not only as an alternative to the LuGre model but also to commercial stick–slip models. KW - commercial stick–slip friction models KW - dynamic friction model KW - long-term stick KW - multibody dynamics Y1 - 2023 U6 - https://doi.org/10.3390/modelling4030021 SN - 2673-3951 N1 - Corresponding author: Georg Rill VL - 4 IS - 3 SP - 366 EP - 381 PB - MDPI ER - TY - JOUR A1 - Rill, Georg A1 - Bauer, Florian A1 - Kirchbeck, Mathias T1 - VTT - a virtual test truck for modern simulation tasks JF - Vehicle system dynamics N2 - The development of new technologies like advanced driver assistance systems or automated driving requires a flexible simulation environment of sufficient complexity. In general this flexibility is not provided by commercial software packages. This paper presents a three-dimensional and nonlinear hand-made model for heavy commercial vehicles including tractor and trailer as well as tractor and semitrailer combinations that can be used in different simulation environments, as well as in real-time applications. As typical for trucks, the torsional flexibility of the frame and a suspended driver's cabin are taken into account. The design kinematics makes it possible to handle different and quite complex axle suspensions very efficiently. Appropriate force elements are used to model various couplings between tractor and trailer or tractor and semitrailer, respectively. The virtual test truck environment (VTT) coded in ANSI C is extremely portable and can easily be embedded in commercial simulation packages like MATLAB/Simulink. It includes the TMeasy tyre model and offers flexible interfaces to third-party software tools. KW - coupled air springs KW - design Kinematics KW - heavy commercial vehicles KW - MATLAB KW - Simulink KW - TMeasy tyre model KW - vehicle coupling KW - Vehicle modelling Y1 - 2021 U6 - https://doi.org/10.1080/00423114.2019.1705356 VL - 59 IS - 4 SP - 635 EP - 656 PB - Taylor&Francis ER - TY - CHAP A1 - Arrieta Castro, Abel A1 - Rill, Georg ED - Orlova, Anna ED - Cole, David T1 - Kinematic Versus Elasto-Kinematic Model of a Twistbeam Suspension T2 - Advances in Dynamics of Vehicles on Roads and Tracks II, proceedings of the 27th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2021): August 17-19, 2021, Saint Petersburg, Russia N2 - The Twistbeam axle suspension is a cheap and robust layout for rear axles at front wheel driven midsize cars. Appropriate models have to take the elastic deformation of the torsion beam into account. A Finite Element approach requires detailed informations of the material properties and the shape which are usually only available in the final production stage. This paper presents a lumped mass model which can easily be integrated into a multibody vehicle model and can be used in the early stage of development. An approximation by the design kinematics further reduces the complexity of the model and considers only the kinematic properties of the Twistbeam suspension. Simulations using a nonlinear and three-dimensional vehicle model with different maneuvers, such as steady-state cornering, step steer input, and driving straight ahead on random road, demonstrate the performance and, in particular, the difference of the presented Twistbeam suspension models. KW - Design kinematics KW - Twistbeam suspension KW - Multibody model KW - Vehicle dynamics Y1 - 2022 U6 - https://doi.org/10.1007/978-3-031-07305-2_59 SP - 505 EP - 605 PB - Springer Nature ER - TY - JOUR A1 - Rill, Georg A1 - Bauer, Florian A1 - Topcagic, Edin T1 - Performance of leaf spring suspended axles in model approaches of different complexities JF - Vehicle System Dynamics N2 - Axles with leaf spring suspension systems are still a popular choice in many commercial vehicles. However, leaf springs are not in perfect conformity to standard multibody vehicle models because they combine guidance and suspension in one single element. Combining standard multibody vehicle models with sophisticated finite element leaf spring models results in rather complex and computing time-consuming solutions. Purely kinematic models, defined by lookup tables or the design kinematics approach, cover only some but not all features of the leaf spring suspension. As shown here, the five-link model, which incorporates a quasi-static solution of the leaf spring compliance, provides a very practical model. It is comparatively lean and provides results of sufficient accuracy in the whole application range. KW - beam-model KW - commercial vehicles KW - design kinematics KW - five-Link model KW - Leaf spring suspension KW - vehicle dynamics Y1 - 2021 U6 - https://doi.org/10.1080/00423114.2021.1928249 VL - 60 IS - 8 SP - 2871 EP - 2889 PB - Taylor&Francis ER -