TY - JOUR A1 - Gärtner, Sebastian A1 - Rank, Daniel A1 - Heberl, Michael A1 - Gaderer, Matthias A1 - Dawoud, Belal A1 - Haumer, Anton A1 - Sterner, Michael T1 - Simulation and Techno-Economic Analysis of a Power-to-Hydrogen Process for Oxyfuel Glass Melting JF - Energies N2 - As an energy-intensive industry sector, the glass industry is strongly affected by the increasingly stringent climate protection targets. As established combustion-based production systems ensure high process stability and glass quality, an immediate switch to low greenhouse gas emission processes is difficult. To approach these challenges, this work investigates a step-by-step integration of a Power-to-Hydrogen concept into established oxyfuel glass melting processes using a simulation approach. This is complemented by a case study for economic analysis on a selected German glass industry site by simulating the power production of a nearby renewable energy park and subsequent optimization of the power-to-hydrogen plant performance and capacities. The results of this study indicate, that the proposed system can reduce specific carbon dioxide emissions by up to 60%, while increasing specific energy demand by a maximum of 25%. Investigations of the impact of altered combustion and furnace properties like adiabatic flame temperature (+25 °C), temperature efficiency (∆ξ = −0.003) and heat capacity flow ratio (∆zHL = −0.009) indicate that pure hydrogen-oxygen combustion has less impact on melting properties than assumed so far. Within the case study, high CO2 abatement costs of 295 €/t CO2-eq. were determined. This is mainly due to the insufficient performance of renewable energy sources. The correlations between process scaling and economic parameters presented in this study show promising potential for further economic optimization of the proposed energy system in the future. KW - Power-to-Gas KW - Hydrogen KW - Electrolysis KW - Oxyfuel KW - Glass Industry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-22713 N1 - Corresponding author: Sebastian Gärtner VL - 14 IS - 24 PB - MDPI ER - TY - CHAP A1 - Haumer, Anton T1 - Modeling and Control Design of an Educational Magnetic Levitation System T2 - Proceedings of the 15th International Modelica Conference 2023, Aachen, October 9-11 N2 - A magnetic levitation system is a perfect educational example of a nonlinear unstable system. Only with suitable control, a small permanent magnet can be held floating stable below a coil. After modeling and simulation of the system, control of the system can be developed. At the end, the control algorithm can be coded on a microcontroller, connected to a pilot plant. KW - mechatronics KW - magnetic levitation KW - time-discrete control KW - functional mockup interface Y1 - 2023 U6 - https://doi.org/10.3384/ecp204763 SN - 1650-3686 PB - Linköping University Electronic Press ER - TY - JOUR A1 - Kral, Christian A1 - Haumer, Anton A1 - Kapeller, Hansjörg A1 - Pirker, Franz T1 - Design and Thermal Simulation of Induction Machines for Traction in Electric and Hybrid Electric Vehicles JF - World Electric Vehicle Journal N2 - An electric traction machine for an electric or a hybrid electric vehicle is usually designed for a specific operating point or cycle. For such an operating point or cycle, the masses and the cooling circuit of the electric machine determine the time dependent temperature distribution within the machine. For a specific load cycle, the thermal simulation of the machine can reveal possible mass and size reductions for a given insulation class of the machine. In addition, such simulations allow the comparison of various cooling concepts. In the machine design process, the first step is a conventional electromagnetic machine design. From the geometric data of this design and the material properties, the parameters of a thermal equivalent circuit can be derived. The differential and algebraic equations of the thermal equivalent circuit are solved by a simulation tool to predict the temperatures of the critical parts in the electric machine. A thermal equivalent circuit is accurate enough to predict the thermal behavior of the critical parts in the electric machine, and yet not too complex, to obtain simulation results with moderate numerical effort. This enables an iterative design process to optimize the drive. KW - Induction Motor KW - Electric Drive KW - Modeling KW - Simulation KW - Thermal Management Y1 - 2007 U6 - https://doi.org/10.3390/wevj1010190 SN - 2032-6653 VL - 1 IS - 1 SP - 190 EP - 196 PB - MDPI ER -