TY - CHAP A1 - Nonn, Aida A1 - Kalwa, Christoph T1 - Simulation of ductile crack propagation in high-strength pipeline steel using damage models T2 - 9th International Pipeline Conference 2012 (IPC 2012), Calgary, Canada N2 - The performance of engineering design of high-strength steel pipelines has revealed the necessity to revise current design procedures. Therefore, an improved and detailed comprehension of fracture mechanisms and development of failure prediction tools are required in order to derive new design criteria. In last decades the most successful failure prediction tools for steel structures subjected to various type of loading can be encountered in the field of damage mechanics. This paper aims to describe ductile fracture behavior of high-strength steel pipelines by applying three different damage models, Gurson-Tvergaard-Needelman (GTN), Fracture Locus Curve (FLC) and Cohesive Zone (CZ). These models are evaluated regarding their capability to estimate ductile crack propagation in laboratory specimens and linepipe components without adjusting the calibrated parameters. It can be shown that appropriate parameter sets can be identified to reproduce load-deformation and fracture resistance curves accurately. The strain rate effect on the fracture behavior is examined by dynamic tests on the BDWT specimens. Finally, the shortcomings of the applied models are pointed out with the reference to possible extensions and modifications. Y1 - 2012 U6 - https://doi.org/10.1115/IPC2012-90653 ER - TY - CHAP A1 - Völling, Alexander A1 - Nonn, Aida A1 - Schneider, Ingo T1 - Anwendung des Kohäsivzonenmodells zur Abbildung von duktilem dynamischen Rissfortschritt in Gasfernleitungen T2 - 45. Tagung des AK Bruch, Berlin, Germany KW - Ferngasleitung KW - Rissfortschritt Y1 - 2013 SP - 253 EP - 262 ER - TY - CHAP A1 - Nonn, Aida A1 - Wessel, Waldemar A1 - Schmidt, Tanja T1 - Application of finite element analysis for assessment of fracture behavior of modern high toughness seamless pipeline steels T2 - 23rd International Society of Offshore and Polar Engineering 2013 (ISOPE 2013), Anchorage, USA N2 - Fracture behavior of seamless pipeline material X65Q acc. to API 5L has been studied both experimentally and numerically at different loading conditions (quasi-static vs. dynamic) and temperatures. The recent findings have shown difficulties in applying well established methods for determination of transition behavior or prediction of ductile crack arrest for the new generation of high-toughness steels. The irregular fracture performance (e.g. so-called "abnormal inverse fracture" appearance, significant scattering in ductile-to-brittle-transition-temperature region, etc.) suggests that the influence of pipe dimensions, loading parameters, crack initiation resistance as well as testing procedure on the fracture behavior has been neither understood nor properly described. This work aims to shed light on these questions regarding the applicability of conventional methods and to better illuminate most relevant parameters affecting fracture behavior of high toughness steels. To achieve this goal, experimental data basis for analysis of fracture behavior in transition and upper shelf regime has been established by conducting quasi-static fracture mechanics tests and dynamic tests on Battelle Drop Weight Tear (BDWT or DWT) specimens at different temperatures. The evaluation of obtained test results in upper shelf has been additionally complemented by numerical simulation of damage behavior. The results highlight the influence of stress conditions on fracture behavior with reference to pipe dimensions and loading conditions and, subsequently, may be used as a basis for revision of existing design methods. KW - Rissfortschritt KW - Nahtloses Rohr KW - Pipeline KW - Bruchmechanische Prüfung KW - Finite-Elemente-Methode Y1 - 2013 U6 - https://doi.org/10.13140/2.1.4239.2322 ER - TY - CHAP A1 - Kofiani, Kirki A1 - Nonn, Aida A1 - Wierzbicki, Tomasz A1 - Kalwa, Christoph A1 - Walters, Carey T1 - Experiments and fracture modeling of high-strength pipelines for high and low stress triaxiality T2 - 22nd International Society of Offshore and Polar Engineering 2012 (ISOPE 2012), Rhodes, Greece, June 2012 N2 - This paper provides results from a comprehensive study on mechanical characterization of high-strength pipeline steel, grade X100 using experimental and numerical methods. The material was characterized for anisotropic plasticity, fracture initiation for various states of stress, (pre-cracked) fracture toughness and uncracked ductility. The experimental program included tests on flat butterfly-shaped, central hole, notched and circular disk specimens for low stress triaxiality levels; as well as tests on round notched bar specimens and SENT fracture mechanics tests, for high values of stress triaxiality. This program covered a wide range of stress conditions and demonstrated its effect on the material resistance. Parallel to the experimental study, detailed numerical investigations were carried out to simulate all different experimental tests. Using an inverse method, a 3-parameter calibration was performed on the Modified Mohr-Coulomb (MMC) fracture model. Subsequently, the predictive capabilities of the MMC were evaluated by the comparison to the fracture toughness tests results, used extensively in the pipeline industry. The capabilities of the MIT fracture model have been demonstrated on an example of high strength offshore steel, X100. The outcome of this study was not only to provide, the overall characterization of the fracture behavior of this material as an example, but also to present the methodology on how to use the MMC model as a practical tool in pipeline design. Y1 - 2012 ER - TY - CHAP A1 - Nonn, Aida A1 - Kalwa, Christoph T1 - Failure modeling of pipeline X100 Material in temperature transition region T2 - 22nd International Society of Offshore and Polar Engineering 2012 (ISOPE 2012), Rhodes, Greece N2 - This paper focuses on the characterization of the fracture performance of X100 material in transition temperature region using both experimental and numerical methods. The ductile fracture has been analyzed using tests on round notched bar specimens and standard fracture mechanics tests performed at room temperature. In previous publications the damage model Gurson-Tvergaard-Needleman (GTN) has been applied and verified by existing experimental data to describe ductile fracture behavior. The brittle fracture and the fracture in temperature transition region have been studied by means of deep and shallow notched SENB specimens at two different temperatures T=- 80°C and -40°C. Besides elastic-plastic analyses to quantify constraint levels for different initial crack configurations at the onset of cleavage fracture, the brittle failure has been described using modified Beremin model. The influence of the stable crack growth on the cleavage failure probability in temperature transition region has been captured by coupling the ductile fracture model (GTN) with the modified Beremin model. Finally, examples have been presented for the practical application of the numerical results on the fracture assessment of the flawed high-strength pipelines. Y1 - 2012 ER - TY - CHAP A1 - Nonn, Aida A1 - Kalwa, Christoph T1 - The effect of microstructure, strain hardening and strain rate on the fracture behavior of high strength pipeline steels T2 - 2nd International Conference on Material Modelling (ICMM2), 31th August - 2nd September, 2011 at Mines Paris Tech, France Y1 - 2011 ER - TY - CHAP A1 - Nonn, Aida A1 - Kalwa, Christoph T1 - Application of damage mechanics approach for crack propagation in pipeline T2 - 19th Biennial Joint Technical Meeting (JTM) on Pipeline Research, April 29 - May 3, 2013, Sydney, Australia Y1 - 2013 ER - TY - CHAP A1 - Nonn, Aida A1 - Kalwa, Christoph T1 - Application of probabilistic fracture mechanics for safety assessment of longitudinally welded linepipes T2 - 6th Pipeline Technology Conference (2013), Ostend, Belgium Y1 - 2013 ER - TY - RPRT A1 - Neidhart, Thomas A1 - Lerch, Maximilian A1 - Wiesinger, Doris A1 - Zrenner, Louis T1 - Kompakte Übertragungsleitungen für hohe Gleichspannungen: Langzeituntersuchungen an einer erdverlegten Versuchsanlage BT - Abschlussbericht zu AP 1.5 Mechanik und AP 1.7 Thermik; Forschungsprojekt-Akronym: DC CTL DBI; Förderkennzeichen: 03ET7546 N2 - Durch den Ausstieg aus der Verstromung fossiler Energieträger und der daraus resultierenden dezentralen Stromerzeugung ist ein Aus- bzw. Umbau des deutschen Übertragungsnetzes erforderlich. Weil aus der dezentralen Energieerzeugung große Trassenlängen resultieren, welche bei Wechselstrom zu Blindleistungsproblematiken führen, wird dort vermehrt auf Hochspannungs-Gleichstrom-Übertragung zurückgegriffen. Im Rahmen des Forschungsprojekts DC CTL DBI (direct current compact transmission line – directly buried investigastions) wurde ein gasisolierte HGÜ-Leiter (GIL) erdverlegt und bei ständigem Monitoring über umfangreiche Sensorik einem Langzeitversuch unterzogen. Anstelle einer klassischen Sandbettung kam ein zeitweise fließfähiger, selbstverdichtender Verfüllbaustoff (ZFSV) zum Einsatz. Somit können Schäden an der Übertragungsleitung infolge Verdichtungsaufwand vermieden und gleichzeitig bessere Bodeneigenschaften hinsichtlich der Wärme- und Wassertransportprozesse erreicht werden. KW - ZFSV KW - Erdverlegte Übertragungsleitungen KW - Erdkabel KW - Zeitweise fließfähiger selbstverdichtender Verfüllbaustoff KW - Wärmetransport Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-21730 ER - TY - CHAP A1 - Sterner, Michael A1 - Stadler, Ingo T1 - Energiespeicher im Wandel der Zeit T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Energiespeicher Y1 - 2017 SN - 978-3-662-48893-5 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_1 SP - 3 EP - 24 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER - TY - CHAP A1 - Sterner, Michael A1 - Stadler, Ingo A1 - Eckert, Fabian A1 - Thema, Martin T1 - Speicherintegration in einzelnen Energiesektoren T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Energiespeicher KW - Systemintegration Y1 - 2017 SN - 978-3-662-48893-5 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_13 SP - 685 EP - 767 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER - TY - CHAP A1 - Sterner, Michael A1 - Bauer, Franz T1 - Definition und Klassifizierung von Energiespeichern T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Energiespeicher Y1 - 2017 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_2 SP - 25 EP - 49 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER - TY - CHAP A1 - Hopfensperger, Bernhard A1 - Daubner, Andreas A1 - Herrmann, Fabian A1 - Hopkins, Andrew A1 - Mellor, Phil T1 - Investigation of Shifted PWM Methods for a Dual Three-Phase System to Reduce Capacitor RMS Current T2 - PCIM Europe Digital Days 2020: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management: 07.-08.07.2020, Online [proceedings] N2 - Mild hybrid automotive topologies containing a 48V high power (>15 kW) electric drive system demand a high integration of power electronics and electrical machine. A multi-phase motor winding topology helps to keep the per-phase operating currents to a reasonable level. Close integration and multi-phase system have led to a drive system with dual 3-phase systems supplied by a common 48V DC-link, which allows to shift PWM patterns for reduction of DC-link capacitor ripple current and size. This paper derives some basic rules for combinations of common PWM methods for dual 3-phase systems without magnetic cross-coupling. Experimental measurements verify simulated results. KW - Elektroantrieb KW - dual three phase system Y1 - 2020 UR - https://ieeexplore.ieee.org/document/9177989 SN - 978-3-8007-5245-4 SP - 124 EP - 131 PB - VDE-Verlag CY - Berlin, Offenbach ER - TY - CHAP A1 - Grauvogl, Dominik A1 - Stauder, Peter A1 - Hopfensperger, Bernhard A1 - Gerling, Dieter T1 - Multiphysics Design of a Wound Field Synchronous Machine with Magnetic Asymmetry T2 - Proceedings of the 2021 IEEE International Electric Machines & Drives Conference (IEMDC): 17-20 May 2021, Hartford, CT, USA N2 - In this paper a multiphysics development method is used for designing a novel wound field synchronous machine of the future generation of high voltage traction drives. This method covers the domains of electromagnetics, the mechanical strength, thermal behavior and the magnetic noise. It is shown that the proposed novel asymmetric design with a circular flux barrier in combination with an asymmetric pole offset is fulfilling the requirements according to performance and torque ripple. A fatigue strength rotor mechanic concept is included. A hybrid cooling concept consisting of a water jacket cooled stator and air cooled rotor ensures the needed continuous power. Unacceptable noise levels are excluded by investigating the equivalent radiated power (ERP) level due to radial forces in the air gap. Finally, the multi-physical workflow resulted in a fully developed component with a high degree of maturity. KW - air cooling KW - wound field synchronous machine KW - cooling concept KW - fatigue limit KW - flux barrier Y1 - 2021 U6 - https://doi.org/10.1109/IEMDC47953.2021.9449564 ER - TY - CHAP A1 - Grauvogl, Dominik A1 - Krabinski, Jeffrey A1 - Stauder, Peter A1 - Hopfensperger, Bernhard A1 - Gerling, Dieter T1 - NVH Comparison of a Novel Wound Field Synchronous Machine with Magnetic Asymmetry with a PSM for a HV Electric Drive T2 - 2021 JSAE Annual Congress (Spring) Proceedings; online meeting (No.76-21) N2 - This paper shows how magnetic noises can be reduced with a wound field synchronous machine (WFSM) with magnetic asymmetry compared to a permanent magnet synchronous machine (PSM), operating at base speed range and full load. In order to reproduce a real noise behavior, the two rotor types are operated in a complete electric drive unit (EDU) consisting of an electric motor, gearbox, inverter and overall housing. In the concept study, the noise characteristics of the two electric machines is evaluated and compared via mechanical finite element method (FEM) simulations using the equivalent radiated power (ERP) level and Campbell diagrams. Furthermore, it is shown that critical frequency orders can already be identified by the analysis of the magnetic force density from the electromagnetic design without computationally intensive ERP calculations. In this context, the ERP investigations have shown that the unique feature of the magnetically asymmetric WFSM is the reduction of the slot harmonics. At the current state of the art, the slot harmonics can only be reduced with a rotor skewing. The disadvantage of this is a reduction in performance and a more expensive production. It is also remarkable that the magnetic asymmetry reduces the slot harmonics more than the rotor skewing in the PSM. In addition, both machines are still considered with a short-pitched stator winding to optimize the overall noise level by reducing the 24th frequency order. KW - Elektroantrieb KW - Synchronmaschine KW - traction drive system KW - NVH KW - e-axle KW - magnetic asymmetry Y1 - 2021 UR - https://tech.jsae.or.jp/paperinfo/en/content/p202101.343/ PB - JSAE ER - TY - CHAP A1 - Lang, Christian A1 - Steinborn, Florian A1 - Steffens, Oliver A1 - Lang, Elmar Wolfgang T1 - Electricity Load Forecasting - An Evaluation of Simple 1D-CNN Network Structures T2 - International Conference on Time Series and Forecasting (ITISE 2019), Proceedings of Papers Vol. 2, 25-27 September 2019, Granada (Spain) N2 - This paper presents a convolutional neural network (CNN)which can be used for forecasting electricity load profiles 36 hours intothe future. In contrast to well established CNN architectures, the inputdata is one-dimensional. A parameter scanning of network parameters isconducted in order to gain information about the influence of the kernelsize, number of filters, and dense size. The results show that a goodforecast quality can already be achieved with basic CNN architectures.The method works not only for smooth sum loads of many hundredconsumers, but also for the load of apartment buildings KW - energy load forecasting KW - STLF KW - neural networks KW - CNN KW - con-volutional networks Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-16649 UR - https://arxiv.org/abs/1911.11536 UR - http://itise.ugr.es/ITISE2019_vol2.pdf SN - 978-84-17970-78-9 SP - 797 EP - 806 ER - TY - CHAP A1 - Lang, Christian A1 - Steinborn, Florian A1 - Steffens, Oliver A1 - Lang, Elmar Wolfgang ED - Valenzuela, O. ED - Rojas, F. ED - Herrera, L.J. ED - Pomares, H. ED - Rojas, I. T1 - Applying a 1D-CNN Network to Electricity Load Forecasting T2 - Theory and Applications of Time Series Analysis N2 - This paper presents a convolutional neural network (CNN) which can be used for forecasting electricity load profiles 36 hours into the future. In contrast to well established CNN architectures, the input data is one-dimensional. A parameter scanning of network parameters is conducted in order to gain information about the influence of the kernel size, number of filters and number of nodes. Furthermore, different dropout methods are applied to the CNN and are evaluated. The results show that a good forecast quality can already be achieved with basic CNN architectures, the dropout improves the forecast. The method works not only for smooth sum loads of many hundred consumers, but also for the load of single apartment buildings. KW - Energy load forecasting KW - STLF KW - Neural networks KW - CNN KW - Convolutional networks Y1 - 2020 U6 - https://doi.org/10.1007/978-3-030-56219-9_14 SP - 205 EP - 218 PB - Springer ER - TY - CHAP A1 - Keim, Vincent A1 - Nonn, Aida A1 - Lenz, D. A1 - Brinnel, Viktoria A1 - Münstermann, Sebastian T1 - Simulation of the ductile fracture behaviour of high toughness pipeline steels using combined damage models T2 - Proceedings of the conference on Technology for future and ageing piplines, Ghent, Belgium Y1 - 2018 ER - TY - CHAP A1 - Arrieta Castro, Abel A1 - Weber, Hans Ingo A1 - Rill, Georg T1 - Design an integrate vehicle control based-on hierarchical architecture for improve the performance of ground vehicles T2 - COBEM2015 : 23rd ABCM International Congress of Mechanical Engineering, December 6-11, 2015, Rio de Janeiro, RJ, Brazi Y1 - 2015 U6 - https://doi.org/10.20906/cps/cob-2015-1970 ER - TY - CHAP A1 - Dessort, Ronnie A1 - Chucholowski, Cornelius A1 - Rill, Georg ED - Bargende, Michael ED - Reuss, Hans-Christian ED - Wiedemann, Jochen T1 - Parametrical approach for modeling of tire forces and torques in TMeasy 5 T2 - 16. Internationales Stuttgarter Symposium, Automobil- und Motorentechnik, Bd. 1 N2 - For the dynamic simulation of on-road vehicles, the model-element “tire/road” is of special importance, according to its influence on the achievable results. Sufficient description of the interaction between tire and road is one of the most challenging tasks of vehicle modeling. Two groups of tire models can be classified: handling models and structural or high-frequency models. Usually, various assumptions are made in modeling vehicles as multibody systems. Therefore, in the interest of balanced modeling, the precision of the complete vehicle model should stand in reasonable relation to the performance of the applied tire model. Handling tire models are characterized by a useful compromise between user friendliness, model complexity, and efficiency in computation time on the one hand, and precision in representation on the other hand. Y1 - 2016 SN - 978-3-658-13254-5 U6 - https://doi.org/10.1007/978-3-658-13255-2_31 SP - 435 EP - 449 PB - Springer CY - Wiesbaden ER -