TY - CHAP A1 - Sterner, Michael A1 - Breuer, Christopher A1 - Drees, Tim A1 - Eckert, Fabian A1 - Maaz, Andreas A1 - Pape, Carsten A1 - Rotering, Niklas A1 - Thema, Martin T1 - Speicherbedarf in der Stromversorgung T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Speicherbedarf KW - Stromversorgung Y1 - 2017 SN - 978-3-662-48893-5 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_3 SP - 53 EP - 140 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER - TY - CHAP A1 - Rauch, Johannes A1 - Brückl, Oliver A1 - Engel, Bernd ED - Schulz, Detlef T1 - Analysis and optimization of the steady state voltage deviation demand for reactive power planning using installed reactive power sources T2 - NEIS 2022; Conference on Sustainable Energy Supply and Energy Storage Systems, 26-27 September 2022, Hamburg N2 - The provision of reactive power is one option for maintaining the grid voltage, that is defined as an ancillary service in Germany. This paper presents an approach for determining deficient voltage deviation demands within an electrical grid for long term reactive power planning investigations. In contrast to previous approaches, which evaluate the Q-behavior of extended ward elements or grid assets, voltage deviations are analyzed bus-specifically. So further reactive power planning investigations are able to scale and optimize additional reactive power sources directly on planning voltage limits using load flow sensitivity techniques. The focus lies on the analysis of the steady state demand at base case conditions. Therefore, a grid planning process is conceptualized. An optimal power flow algorithm based on Differential Evolution is used for an optimal reactive power dispatch of installed reactive power sources, e. g. reactive power compensation systems or (renewable) energy sources to minimize the total voltage deviation according to voltage limits of Transmission System Operators planning principles. Methodological and processuals specifications as well as an application use case with an exemplary transmission system are presented in this paper. KW - Reactive Power KW - Reactiver Power Planning KW - Voltage Control KW - Optimal Power Flow KW - Differential Evolution Y1 - 2022 UR - https://ieeexplore.ieee.org/document/10048083 SN - 978-3-8007-5983-5 SN - 2510-6902 SP - 175 EP - 182 PB - VDE-Verlag CY - Berlin ER - TY - JOUR A1 - Thema, Martin A1 - Weidlich, Tobias A1 - Hörl, Manuel A1 - Bellack, Annett A1 - Mörs, Friedemann A1 - Hackl, Florian A1 - Kohlmayer, Matthias A1 - Gleich, Jasmin A1 - Stabenau, Carsten A1 - Trabold, Thomas A1 - Neubert, Michael A1 - Ortloff, Felix A1 - Brotsack, Raimund A1 - Schmack, Doris A1 - Huber, Harald A1 - Hafenbradl, Doris A1 - Karl, Jürgen A1 - Sterner, Michael T1 - Biological CO2-Methanation: An Approach to Standardization JF - Energies N2 - Power-to-Methane as one part of Power-to-Gas has been recognized globally as one of the key elements for the transition towards a sustainable energy system. While plants that produce methane catalytically have been in operation for a long time, biological methanation has just reached industrial pilot scale and near-term commercial application. The growing importance of the biological method is reflected by an increasing number of scientific articles describing novel approaches to improve this technology. However, these studies are difficult to compare because they lack a coherent nomenclature. In this article, we present a comprehensive set of parameters allowing the characterization and comparison of various biological methanation processes. To identify relevant parameters needed for a proper description of this technology, we summarized existing literature and defined system boundaries for Power-to-Methane process steps. On this basis, we derive system parameters providing information on the methanation system, its performance, the biology and cost aspects. As a result, three different standards are provided as a blueprint matrix for use in academia and industry applicable to both, biological and catalytic methanation. Hence, this review attempts to set the standards for a comprehensive description of biological and chemical methanation processes. KW - Biological methanation KW - bubble column reactor KW - CO2-methanation KW - CSTR KW - membrane reactor KW - methanation KW - Power-to-Gas KW - Power-to-Methane KW - standardization KW - Trickle-bed reactor Y1 - 2019 U6 - https://doi.org/10.3390/en12091670 N1 - Corresponding author: Martin Thema VL - 12 IS - 9 SP - 1 EP - 32 PB - MDPI ER - TY - CHAP A1 - Sterner, Michael A1 - Eckert, Fabian A1 - Henning, Hans-Martin A1 - Trost, Tobias T1 - Speicherbedarf im Verkehrs- und Chemiesektor T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Speicherbedarf KW - Verkehrssektor KW - Chemische Industrie Y1 - 2017 SN - 978-3-662-48893-5 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_5 SP - 169 EP - 192 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER - TY - CHAP A1 - Sterner, Michael A1 - Thema, Martin T1 - Vergleich der Speichersysteme T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Energiespeicher Y1 - 2017 SN - 978-3-662-48893-5 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_12 SP - 645 EP - 682 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER - TY - CHAP A1 - Sterner, Michael A1 - Stadler, Ingo A1 - Eckert, Fabian A1 - Gerhardt, Norman A1 - von Olshausen, Christian A1 - Thema, Martin A1 - Trost, Tobias T1 - Speicherintegration zur Kopplung unterschiedlicher Energiesektoren T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Energieversorgung KW - Energiespeicher KW - Sektorkopplung KW - Systemintegration Y1 - 2017 SN - 978-3-662-48893-5 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_14 SP - 769 EP - 818 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER - TY - CHAP A1 - Sterner, Michael A1 - Bauer, Franz A1 - Crotogino, Fritz A1 - Eckert, Fabian A1 - von Olshausen, Christian A1 - Teichmann, Daniel A1 - Thema, Martin T1 - Chemische Energiespeicher T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Energiespeicher KW - Elektrochemisches Verfahren KW - Elektrochemische Energieumwandlung Y1 - 2017 SN - 978-3-662-48893-5 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_8 SP - 327 EP - 493 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER - TY - CHAP A1 - Malz, Sebastian A1 - Steffens, Oliver A1 - Krenkel, Walter ED - Völker, Conrad ED - Kornadt, Oliver ED - Jentsch, Mark ED - Vogel, Albert T1 - Solaraktive Fassaden im Bestandsbau T2 - Bauphysiktage 2019 in Weimar - Bauphysik in Forschung und Praxis, 25. und 26. September 2019, Bauhaus-Universität Weimar N2 - Im Rahmen des Forschungsprojektes MAGGIE, das am Beispiel des historischen Quartiers Margaretenau in Regensburg innovative Lösungen für modernes und bezahlbares Wohnen erforscht, soll über eine solaraktive Fassade Sonnenwärme im Bestandsmauerwerk eingespeichert werden, um so den Energiebedarf des Gebäudes zu reduzieren. Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-20464 UR - https://www.researchgate.net/publication/341654708_Solaraktive_Fassaden_im_Bestandsbau SN - 978-3-00-063821-3 SP - 127 EP - 129 ER - TY - JOUR A1 - Li, Liwen A1 - Lange, Klaus W. T1 - Planning Principles for Integrating Community Empowerment into Zero-Net Carbon Transformation JF - smart cities N2 - The adoption of the UN 2030 Agenda and the Sustainable Development Goals is a landmark in international sustainability politics. For example, Europe has set ambitious targets to achieve 100 climate-neutral and smart cities by 2030. However, numerous case studies from different countries have found that accelerating the transition to net-zero carbon emissions is easily hampered by the lack of a coherent systems framework, and that implementation gaps remain at the community level. These barriers are often due to a lack of an adequate end-user (i.e., household) input and early planning participation. This work therefore aims to improve on conventional planning methods that do not reflect innovative technologies with uncertainty and may not be applicable due to the lack of community empowerment, which is a dynamic learning and intervention opportunity for end-users at different planning stages (i.e., outreach, survey, planning, implementation, management, and maintenance). Using the lessons learned from participatory action research, whereby the author was involved as a project director throughout the planning and design process, we identified a six-step cycle principle. The steps are (1) collective action commitments, (2) local values and resource identification, (3) carbon footprint inventory, (4) optimized integration of environment, economy, and energy action plans, (5) Flexible strategic energy system plans, and (6) digital performance monitoring. Ultimately, the outcomes provide application support for policymakers and planners and stimulate community engagement to contribute to the achievement of zero net carbon emissions. T2 - Planungsprinzipien für die Integration von Community Empowerment in die Zero-Net Carbon Transformation KW - social science KW - environmental planning KW - responsible research innovation KW - public–private partnerships KW - low-carbon communities KW - participatory action research KW - collective actions Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-57765 VL - 2023 IS - 6 SP - 100 EP - 122 PB - MDPI CY - Basel ER - TY - CHAP A1 - Brückl, Oliver A1 - Krpal, Ondrej A1 - Riepl, Markus T1 - Influence of wind and solar energy on the frequency of switching operations of On-Load Tap-Changers (OLTC) BT - Electric Power Engineering T2 - Proceedings of the 13th International Scientific Conference Electric Power Engineering 2012, EPE 2012; Vol. 2 Y1 - 2012 SP - 719 EP - 722 PB - EPE CY - Brno, Czech Republic ER - TY - CHAP A1 - Sterner, Michael A1 - Eckert, Fabian A1 - Gerhardt, Norman A1 - Henning, Hans-Martin A1 - Palzer, Andreas T1 - Speicherbedarf in der Wärmeversorgung T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Energiespeicher KW - Wärmeversorgung Y1 - 2017 SN - 978-3-662-48893-5 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_4 SP - 141 EP - 168 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER - TY - RPRT A1 - Brückl, Oliver T1 - Hemmnisse im Verteilnetzausbau und deren Überwindung N2 - Die Bundesregierung hat ambitionierte Ausbaupfade für die Windenergie und Photovoltaik festgelegt. Allerdings gefährdet vor allem der Verteilnetzausbau und der Netzanschluss der Erneuerbare-Energien-Anlagen (EE-Anlagen) die Erreichung dieser hochgesteckten Ziele. In einem Gutachten im Auftrag der Fraktion von Bündnis 90/DIE GRÜNEN im Bayerischen Landtag identifiziert Prof. Dr.-Ing. Oliver Brückl die wesentlichen Hemmnisse für den beschleunigten Verteilnetzausbau und den Netzanschluss für EE-Anlagen und diskutiert Lösungsansätze in folgenden Bereichen: Regulierungsrahmen für die Verteilnetzbetreiber, Genehmigungsverfahren von Netzausbauprojekten, Praxis der Netzintegration von EE-An lagen, Personalkapazitäten, Beschaffung von Betriebsmitteln und Bau von Anlagen, Zertifizierungsprozess für den Netzanschluss von EE-Anlagen. Im Rahmen des Gutachtens wurden ca. 35 Interviews mit verschiedenen Stakeholdern geführt: Netzbetreiber und Stadtwerke, Projektierer*innen, Herstellerindustrie, Verbände und Behörden. KW - Netzausbau KW - Netzintegration Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-60438 PB - INA – Institut für Netz- und Anwendungstechnik GmbH CY - Waldmünchen ER - TY - JOUR A1 - Brückl, Oliver A1 - Dalisson, Nils A1 - Strohmayer, Bernhard A1 - Haslbeck, Matthias T1 - Spannungshaltungsmaßnahmen im Verteilungsnetz : Systemvergleich JF - EW : Magazin für die Energie-Wirtschaft N2 - Verteilungsnetzbetreibern stehen mittlerweile viele Maßnahmen zur Behebung des Spannungsbandproblems zur Verfügung. Innovative Konzepte wie der regelbare Ortsnetztransformator werden in vielen Pilotprojekten erprobt. Unklar ist jedoch noch, welche Maßnahmen beziehungsweise Kombinationen langfristig wirtschaftlich am günstigsten sind. Die Ostbayerische Technische Hochschule Regensburg untersucht daher in einem Forschungsprojekt verschiedene Maßnahmen, um sie unter wirtschaftlichen, technischen und energetischen Gesichtspunkten bewerten zu können. Der Beitrag untersucht am Beispiel des Netzmodells eines Dorfnetzes mit zahlreichen Photovoltaikanlagen unterschiedliche Szenarien für die Spannungshaltung, wobei u. a. Maßnahmen wie die Parallelverkabelung, das Einspeisemanagement durch Spitzenlastkappung, die Spannungs-Blindleistungsregelung durch die Erzeugungsanlagen sowie ein RONT (regelbarer Ortsnetztransformator) betrachtet werden. Dabei zeigt sich, dass es keine Maßnahme gibt, die in allen Belangen die günstigste Lösung ist. Es zeichnet sich jedoch ab, dass der RONT in vielen Fällen (abhängig vom Durchdringungsgrad) die günstigste oder zumeist eine günstige Lösung zur Erhöhung der Netzanschlusskapazität darstellt. KW - Blindleistungsregelung KW - dezentrale Stromerzeugung KW - Einspeisung KW - Energienetzplanung KW - Netzmodell KW - Netzstabilität (Energienetz) KW - Ortsnetz (Energie) KW - Photovoltaik KW - Regeltransformator KW - Spannungsregelung KW - Vergleichsuntersuchung Y1 - 2014 UR - https://emagazin.ew-magazin.de/de/profiles/a21024e15cd4/editions/fc50e368dae3fad315dd SN - 1619-5795 VL - 113 IS - 6 SP - 66 EP - 69 PB - VWEW-Energieverl. CY - Frankfurt am Main ER - TY - CHAP A1 - Schweiberer, Philipp A1 - Rauch, Johannes A1 - Brückl, Oliver ED - Schulz, Detlef T1 - Long-term analysis of industrial reactive power potentials with consideration of plant-internal grid restrictions using the example of an industrial plant in a distribution grid T2 - NEIS 2022; Conference on Sustainable Energy Supply and Energy Storage Systems, 26-27 September 2022, Hamburg N2 - Since conventional generation plants provide a considerable share of reactive power but are gradually being shut down due to energy transition, leading to power deficits at the transmission grid level, new concepts for the supply of reactive power must be developed. As one possibility for the latter, industrial plants in the distribution grid are considered suitable, as their reactive power potentials can contribute to voltage maintenance and thus to a grid- or system-serving behavior. In this paper, the determination of reactive power potentials provided by industrial compensation systems (ICS) is presented. An industrial plant in the medium voltage grid, with three installed ICSs, is investigated. The potentials are determined and described based on their time characteristics, which provide information about the occurrence and distribution of inductive and capacitive potentials. A grid simulation of the investigated industrial grid is used to analyze the effects of retrieving the reactive power potentials regarding equipment utilizations and voltage limits. KW - Reactive Power KW - Reactive Power Potentials KW - Industrial plant KW - Voltage Stability KW - Long term analysis Y1 - 2022 UR - https://ieeexplore.ieee.org/document/10048065 SN - 978-3-8007-5983-5 SN - 2510-6902 SP - 51 EP - 56 PB - VDE-Verlag CY - Berlin ER - TY - CHAP A1 - Kraus, Hermann A1 - Brückl, Oliver ED - Schulz, Detlef T1 - Concept for the Use of an Automated Network-Planning in the Distribution Grid Level with Coordination of Various Grid Expansion Measures T2 - NEIS 2019 : Conference on Sustainable Energy Supply and Energy Storage Systems, Hamburg 19.09.2019 - 20.09.2019 N2 - In this thesis, a concept for the automated use of network planning processes, which is part of the decision support system developed in the framework of the EU project CrossEnergy, is presented. This publication focuses on the automatic processing of input data and subsequent network modeling as well as the coordination of network extension measures for the systematic solution of static voltage and current problems. Different variants are calculated in order to be able to compare the design technologies. KW - Eingabedaten KW - Entscheidungsunterstützungssystem KW - Konstruktionstechnik KW - Netzausbau KW - Netzmodell KW - Spannung (elektrisch) Y1 - 2019 UR - http://www.vde-verlag.de/proceedings-de/565152022.html SN - 978-3-8007-5152-5 SP - 161 EP - 165 ER - TY - CHAP A1 - Nonn, Aida A1 - Erdelen-Peppler, Marion A1 - Wessel, Waldemar A1 - Mahn, Denise T1 - How reliable are the current testing procedures for the safety assurance against crack propagation in seamless gas pipelines T2 - Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering (OMAE2014), Volume 4A: Structures, Safety and Reliability, June 8-13, 2014, San Francisco, USA N2 - The worldwide growing energy demand with the exploration of new gas fields has promoted the development of high toughness seamless pipeline steels which should sustain the increasing demands resulting from the complex loading situations. One of the most important prerequisites for safe installation and operation of long distance gas transmission pipelines is the detailed knowledge and characterization of their fracture performance for specific applications. However, recent industry experience has revealed concerns related to the limitations and reliability of current test methods for brittle-to-ductile transition evaluation. Regarding the transition temperature evaluation, the critical issues involve Drop-Weight Tear Testing (DWTT) and full-scale West-Jefferson (WJ) test applied to the smaller pipes with diameter less than 500mm. The DWTT leads frequently to invalid results in terms of abnormal fracture appearance and inverse fracture occurrence. It is still not clear if this behavior is only owed to a testing effect, which material characteristics cause it and how far it reflects the full-scale behavior. Similar observations were made for the West-Jefferson tests, which could not be assessed in the standard manner either. Again, the question was towards testing effects and the behavior of the pipeline transporting gaseous media remains unanswered. Therefore, this paper aims at identifying open questions on basis of a literature study and own experimental results and showing possible ways forward in demonstrating safety in design against propagating fracture. Y1 - 2014 U6 - https://doi.org/10.13140/2.1.3190.6567 ER - TY - CHAP A1 - Nonn, Aida A1 - Paredes, Marcelo A1 - Nordhagen, H. O. A1 - Munkejord, S. T. A1 - Wierzbicki, Tomasz T1 - Challenges in fluid-structure modeling of crack propagation and arrest in modern steel pipelines T2 - 14th International Congress on Fracture (ICF14), 18-23 June 2017, Rhodes, Greece Y1 - 2017 SP - 1351 EP - 1352 ER - TY - CHAP A1 - Karbasian, H. A1 - Groß-Weege, J. A1 - Nonn, Aida A1 - Zimmermann, S. A1 - Kalwa, Christoph T1 - Assessment of collapse resistance of UOE pipes – comparison of full-scale and ring collapse tests T2 - Proceedings of the 10th International Pipeline Conference 2014 (IPC 2014), September 29 - October 3, 2014, Calgary, Alberta, Canada Y1 - 2014 ER - TY - CHAP A1 - Nonn, Aida A1 - Kalwa, Christoph T1 - Analysis of dynamic ductile fracture propagation in pipeline steels BT - a damage mechanics approach T2 - 6th Pipeline Technology Conference (2013), Ostend, Belgium N2 - Analysis of dynamic ductile fracture propagation in pipeline steels: a damage-T IS A WELL-ESTABLISHED fact that the successful application of new generation of high-strength steel grades for long-distance gas transmission depends strongly on full understanding and appropriate characterization of fracture resistance. A damage mechanics approach has found to be a very promising tool in supporting the experimental characterization of ductile fracture propagation. The major advantage of this approach lies in the consideration of the influence of local stress and strain variables on the damage evolution and thus its capability to describe the fracture resistance of the pipelines with different stress triaxiality level by using the same set of parameters. However, the wider application of this approach has been limited due to the issues such as reliable determination of input parameters and required material properties, mesh size dependence, etc.. The objective of this paper is to characterize dynamic ductile fracture resistance of X65 and X80 pipeline materials and to demonstrate the potential of damage mechanics approach for the simulation of dynamic fracture propagation by using two damage models: (1) Cohesive Zone (CZ) model and (2) Gurson-Tvergaard-Needleman (GTN) model. In the first step, results from quasi-static and dynamic tensile tests are used to describe plasticity in terms of flow curves. The calibration of input parameters for both models is performed by using the load-deformation curves from quasi-static tests on non-standard drop-weight tear (DWT) specimens with pre-fatigued crack. b. In the next step, estimated damage model parameters are verified by means of the dynamic tests on the pressed and Chevron notch DWT specimens. Different amounts of crack growth are established by varying the drop height. The experimental fracture resistance is quantified in terms of J-integral at specific crack length. The numerical results are evaluated with respect to global load-deformation and fracture resistance behavior. Furthermore, damage simulations are applied for quantification of local stress conditions in order to identify the major factors controlling the crack propagation. The results reported here serve as a basis for better understanding of fracture performance in dependences of geometry and material properties. Y1 - 2013 U6 - https://doi.org/10.13140/2.1.4370.3046 ER - TY - CHAP A1 - Nonn, Aida A1 - Erdelen-Peppler, Marion A1 - Wessel, Waldemar A1 - Harksen, Silke A1 - Mahn, Denise T1 - How to assure fracture-propagation control for seamless gas pipelines? T2 - Proceedings of the 2014 10th International Pipeline Conference (IPC2014), Volume 3: Operations, Monitoring, and Maintenance, Materials and Joining, September 29-October 3, 2014, Calgary, Canada N2 - Fracture propagation control in gas transmission gas pipelines belongs to the major design requirements for safe operation at high internal pressures. However, the current tests such as Drop-Weight-Tear Test (DWTT) and full-scale West-Jefferson (WJ) test reach the limits of their applicability with respect to transition temperature evaluation for seamless quenched and tempered small diameter pipes reflecting nowadays alloying concepts related to mechanical properties. Hereby, different geometry and material effects are evident which might lead to misinterpretation and unreliability of testing results. This paper aims to discuss open issues addressed in the literature and in own experimental findings with respect to reliability and transferability of testing methods, fracture parameters and their representativeness of seamless quenched and tempered pipeline behavior. By applying damage mechanics approach, it is possible to quantify the prevailing stress state and thus to understand the mechanisms controlling specific fracture appearance (ductile or brittle). Furthermore, studies were performed with objective to quantify the effect of different parameters (geometry, material and loading) on the fracture performance of the pipeline. The results from these investigations will serve as a basis for a safe pipeline design against propagating fracture. Y1 - 2014 U6 - https://doi.org/10.1115/IPC2014-33169 ER - TY - CHAP A1 - Nonn, Aida A1 - Kalwa, Christoph T1 - Simulation of ductile crack propagation in high-strength pipeline steel using damage models T2 - 9th International Pipeline Conference 2012 (IPC 2012), Calgary, Canada N2 - The performance of engineering design of high-strength steel pipelines has revealed the necessity to revise current design procedures. Therefore, an improved and detailed comprehension of fracture mechanisms and development of failure prediction tools are required in order to derive new design criteria. In last decades the most successful failure prediction tools for steel structures subjected to various type of loading can be encountered in the field of damage mechanics. This paper aims to describe ductile fracture behavior of high-strength steel pipelines by applying three different damage models, Gurson-Tvergaard-Needelman (GTN), Fracture Locus Curve (FLC) and Cohesive Zone (CZ). These models are evaluated regarding their capability to estimate ductile crack propagation in laboratory specimens and linepipe components without adjusting the calibrated parameters. It can be shown that appropriate parameter sets can be identified to reproduce load-deformation and fracture resistance curves accurately. The strain rate effect on the fracture behavior is examined by dynamic tests on the BDWT specimens. Finally, the shortcomings of the applied models are pointed out with the reference to possible extensions and modifications. Y1 - 2012 U6 - https://doi.org/10.1115/IPC2012-90653 ER - TY - CHAP A1 - Völling, Alexander A1 - Nonn, Aida A1 - Schneider, Ingo T1 - Anwendung des Kohäsivzonenmodells zur Abbildung von duktilem dynamischen Rissfortschritt in Gasfernleitungen T2 - 45. Tagung des AK Bruch, Berlin, Germany KW - Ferngasleitung KW - Rissfortschritt Y1 - 2013 SP - 253 EP - 262 ER - TY - CHAP A1 - Nonn, Aida A1 - Wessel, Waldemar A1 - Schmidt, Tanja T1 - Application of finite element analysis for assessment of fracture behavior of modern high toughness seamless pipeline steels T2 - 23rd International Society of Offshore and Polar Engineering 2013 (ISOPE 2013), Anchorage, USA N2 - Fracture behavior of seamless pipeline material X65Q acc. to API 5L has been studied both experimentally and numerically at different loading conditions (quasi-static vs. dynamic) and temperatures. The recent findings have shown difficulties in applying well established methods for determination of transition behavior or prediction of ductile crack arrest for the new generation of high-toughness steels. The irregular fracture performance (e.g. so-called "abnormal inverse fracture" appearance, significant scattering in ductile-to-brittle-transition-temperature region, etc.) suggests that the influence of pipe dimensions, loading parameters, crack initiation resistance as well as testing procedure on the fracture behavior has been neither understood nor properly described. This work aims to shed light on these questions regarding the applicability of conventional methods and to better illuminate most relevant parameters affecting fracture behavior of high toughness steels. To achieve this goal, experimental data basis for analysis of fracture behavior in transition and upper shelf regime has been established by conducting quasi-static fracture mechanics tests and dynamic tests on Battelle Drop Weight Tear (BDWT or DWT) specimens at different temperatures. The evaluation of obtained test results in upper shelf has been additionally complemented by numerical simulation of damage behavior. The results highlight the influence of stress conditions on fracture behavior with reference to pipe dimensions and loading conditions and, subsequently, may be used as a basis for revision of existing design methods. KW - Rissfortschritt KW - Nahtloses Rohr KW - Pipeline KW - Bruchmechanische Prüfung KW - Finite-Elemente-Methode Y1 - 2013 U6 - https://doi.org/10.13140/2.1.4239.2322 ER - TY - CHAP A1 - Kofiani, Kirki A1 - Nonn, Aida A1 - Wierzbicki, Tomasz A1 - Kalwa, Christoph A1 - Walters, Carey T1 - Experiments and fracture modeling of high-strength pipelines for high and low stress triaxiality T2 - 22nd International Society of Offshore and Polar Engineering 2012 (ISOPE 2012), Rhodes, Greece, June 2012 N2 - This paper provides results from a comprehensive study on mechanical characterization of high-strength pipeline steel, grade X100 using experimental and numerical methods. The material was characterized for anisotropic plasticity, fracture initiation for various states of stress, (pre-cracked) fracture toughness and uncracked ductility. The experimental program included tests on flat butterfly-shaped, central hole, notched and circular disk specimens for low stress triaxiality levels; as well as tests on round notched bar specimens and SENT fracture mechanics tests, for high values of stress triaxiality. This program covered a wide range of stress conditions and demonstrated its effect on the material resistance. Parallel to the experimental study, detailed numerical investigations were carried out to simulate all different experimental tests. Using an inverse method, a 3-parameter calibration was performed on the Modified Mohr-Coulomb (MMC) fracture model. Subsequently, the predictive capabilities of the MMC were evaluated by the comparison to the fracture toughness tests results, used extensively in the pipeline industry. The capabilities of the MIT fracture model have been demonstrated on an example of high strength offshore steel, X100. The outcome of this study was not only to provide, the overall characterization of the fracture behavior of this material as an example, but also to present the methodology on how to use the MMC model as a practical tool in pipeline design. Y1 - 2012 ER - TY - CHAP A1 - Nonn, Aida A1 - Kalwa, Christoph T1 - Failure modeling of pipeline X100 Material in temperature transition region T2 - 22nd International Society of Offshore and Polar Engineering 2012 (ISOPE 2012), Rhodes, Greece N2 - This paper focuses on the characterization of the fracture performance of X100 material in transition temperature region using both experimental and numerical methods. The ductile fracture has been analyzed using tests on round notched bar specimens and standard fracture mechanics tests performed at room temperature. In previous publications the damage model Gurson-Tvergaard-Needleman (GTN) has been applied and verified by existing experimental data to describe ductile fracture behavior. The brittle fracture and the fracture in temperature transition region have been studied by means of deep and shallow notched SENB specimens at two different temperatures T=- 80°C and -40°C. Besides elastic-plastic analyses to quantify constraint levels for different initial crack configurations at the onset of cleavage fracture, the brittle failure has been described using modified Beremin model. The influence of the stable crack growth on the cleavage failure probability in temperature transition region has been captured by coupling the ductile fracture model (GTN) with the modified Beremin model. Finally, examples have been presented for the practical application of the numerical results on the fracture assessment of the flawed high-strength pipelines. Y1 - 2012 ER - TY - CHAP A1 - Nonn, Aida A1 - Kalwa, Christoph T1 - The effect of microstructure, strain hardening and strain rate on the fracture behavior of high strength pipeline steels T2 - 2nd International Conference on Material Modelling (ICMM2), 31th August - 2nd September, 2011 at Mines Paris Tech, France Y1 - 2011 ER - TY - CHAP A1 - Nonn, Aida A1 - Kalwa, Christoph T1 - Application of damage mechanics approach for crack propagation in pipeline T2 - 19th Biennial Joint Technical Meeting (JTM) on Pipeline Research, April 29 - May 3, 2013, Sydney, Australia Y1 - 2013 ER - TY - CHAP A1 - Nonn, Aida A1 - Kalwa, Christoph T1 - Application of probabilistic fracture mechanics for safety assessment of longitudinally welded linepipes T2 - 6th Pipeline Technology Conference (2013), Ostend, Belgium Y1 - 2013 ER - TY - RPRT A1 - Neidhart, Thomas A1 - Lerch, Maximilian A1 - Wiesinger, Doris A1 - Zrenner, Louis T1 - Kompakte Übertragungsleitungen für hohe Gleichspannungen: Langzeituntersuchungen an einer erdverlegten Versuchsanlage BT - Abschlussbericht zu AP 1.5 Mechanik und AP 1.7 Thermik; Forschungsprojekt-Akronym: DC CTL DBI; Förderkennzeichen: 03ET7546 N2 - Durch den Ausstieg aus der Verstromung fossiler Energieträger und der daraus resultierenden dezentralen Stromerzeugung ist ein Aus- bzw. Umbau des deutschen Übertragungsnetzes erforderlich. Weil aus der dezentralen Energieerzeugung große Trassenlängen resultieren, welche bei Wechselstrom zu Blindleistungsproblematiken führen, wird dort vermehrt auf Hochspannungs-Gleichstrom-Übertragung zurückgegriffen. Im Rahmen des Forschungsprojekts DC CTL DBI (direct current compact transmission line – directly buried investigastions) wurde ein gasisolierte HGÜ-Leiter (GIL) erdverlegt und bei ständigem Monitoring über umfangreiche Sensorik einem Langzeitversuch unterzogen. Anstelle einer klassischen Sandbettung kam ein zeitweise fließfähiger, selbstverdichtender Verfüllbaustoff (ZFSV) zum Einsatz. Somit können Schäden an der Übertragungsleitung infolge Verdichtungsaufwand vermieden und gleichzeitig bessere Bodeneigenschaften hinsichtlich der Wärme- und Wassertransportprozesse erreicht werden. KW - ZFSV KW - Erdverlegte Übertragungsleitungen KW - Erdkabel KW - Zeitweise fließfähiger selbstverdichtender Verfüllbaustoff KW - Wärmetransport Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-21730 ER - TY - CHAP A1 - Sterner, Michael A1 - Stadler, Ingo T1 - Energiespeicher im Wandel der Zeit T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Energiespeicher Y1 - 2017 SN - 978-3-662-48893-5 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_1 SP - 3 EP - 24 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER - TY - CHAP A1 - Sterner, Michael A1 - Stadler, Ingo A1 - Eckert, Fabian A1 - Thema, Martin T1 - Speicherintegration in einzelnen Energiesektoren T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Energiespeicher KW - Systemintegration Y1 - 2017 SN - 978-3-662-48893-5 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_13 SP - 685 EP - 767 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER - TY - CHAP A1 - Sterner, Michael A1 - Bauer, Franz T1 - Definition und Klassifizierung von Energiespeichern T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Energiespeicher Y1 - 2017 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_2 SP - 25 EP - 49 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER - TY - CHAP A1 - Hopfensperger, Bernhard A1 - Daubner, Andreas A1 - Herrmann, Fabian A1 - Hopkins, Andrew A1 - Mellor, Phil T1 - Investigation of Shifted PWM Methods for a Dual Three-Phase System to Reduce Capacitor RMS Current T2 - PCIM Europe Digital Days 2020: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management: 07.-08.07.2020, Online [proceedings] N2 - Mild hybrid automotive topologies containing a 48V high power (>15 kW) electric drive system demand a high integration of power electronics and electrical machine. A multi-phase motor winding topology helps to keep the per-phase operating currents to a reasonable level. Close integration and multi-phase system have led to a drive system with dual 3-phase systems supplied by a common 48V DC-link, which allows to shift PWM patterns for reduction of DC-link capacitor ripple current and size. This paper derives some basic rules for combinations of common PWM methods for dual 3-phase systems without magnetic cross-coupling. Experimental measurements verify simulated results. KW - Elektroantrieb KW - dual three phase system Y1 - 2020 UR - https://ieeexplore.ieee.org/document/9177989 SN - 978-3-8007-5245-4 SP - 124 EP - 131 PB - VDE-Verlag CY - Berlin, Offenbach ER - TY - CHAP A1 - Grauvogl, Dominik A1 - Stauder, Peter A1 - Hopfensperger, Bernhard A1 - Gerling, Dieter T1 - Multiphysics Design of a Wound Field Synchronous Machine with Magnetic Asymmetry T2 - Proceedings of the 2021 IEEE International Electric Machines & Drives Conference (IEMDC): 17-20 May 2021, Hartford, CT, USA N2 - In this paper a multiphysics development method is used for designing a novel wound field synchronous machine of the future generation of high voltage traction drives. This method covers the domains of electromagnetics, the mechanical strength, thermal behavior and the magnetic noise. It is shown that the proposed novel asymmetric design with a circular flux barrier in combination with an asymmetric pole offset is fulfilling the requirements according to performance and torque ripple. A fatigue strength rotor mechanic concept is included. A hybrid cooling concept consisting of a water jacket cooled stator and air cooled rotor ensures the needed continuous power. Unacceptable noise levels are excluded by investigating the equivalent radiated power (ERP) level due to radial forces in the air gap. Finally, the multi-physical workflow resulted in a fully developed component with a high degree of maturity. KW - air cooling KW - wound field synchronous machine KW - cooling concept KW - fatigue limit KW - flux barrier Y1 - 2021 U6 - https://doi.org/10.1109/IEMDC47953.2021.9449564 ER - TY - CHAP A1 - Grauvogl, Dominik A1 - Krabinski, Jeffrey A1 - Stauder, Peter A1 - Hopfensperger, Bernhard A1 - Gerling, Dieter T1 - NVH Comparison of a Novel Wound Field Synchronous Machine with Magnetic Asymmetry with a PSM for a HV Electric Drive T2 - 2021 JSAE Annual Congress (Spring) Proceedings; online meeting (No.76-21) N2 - This paper shows how magnetic noises can be reduced with a wound field synchronous machine (WFSM) with magnetic asymmetry compared to a permanent magnet synchronous machine (PSM), operating at base speed range and full load. In order to reproduce a real noise behavior, the two rotor types are operated in a complete electric drive unit (EDU) consisting of an electric motor, gearbox, inverter and overall housing. In the concept study, the noise characteristics of the two electric machines is evaluated and compared via mechanical finite element method (FEM) simulations using the equivalent radiated power (ERP) level and Campbell diagrams. Furthermore, it is shown that critical frequency orders can already be identified by the analysis of the magnetic force density from the electromagnetic design without computationally intensive ERP calculations. In this context, the ERP investigations have shown that the unique feature of the magnetically asymmetric WFSM is the reduction of the slot harmonics. At the current state of the art, the slot harmonics can only be reduced with a rotor skewing. The disadvantage of this is a reduction in performance and a more expensive production. It is also remarkable that the magnetic asymmetry reduces the slot harmonics more than the rotor skewing in the PSM. In addition, both machines are still considered with a short-pitched stator winding to optimize the overall noise level by reducing the 24th frequency order. KW - Elektroantrieb KW - Synchronmaschine KW - traction drive system KW - NVH KW - e-axle KW - magnetic asymmetry Y1 - 2021 UR - https://tech.jsae.or.jp/paperinfo/en/content/p202101.343/ PB - JSAE ER - TY - CHAP A1 - Lang, Christian A1 - Steinborn, Florian A1 - Steffens, Oliver A1 - Lang, Elmar Wolfgang T1 - Electricity Load Forecasting - An Evaluation of Simple 1D-CNN Network Structures T2 - International Conference on Time Series and Forecasting (ITISE 2019), Proceedings of Papers Vol. 2, 25-27 September 2019, Granada (Spain) N2 - This paper presents a convolutional neural network (CNN)which can be used for forecasting electricity load profiles 36 hours intothe future. In contrast to well established CNN architectures, the inputdata is one-dimensional. A parameter scanning of network parameters isconducted in order to gain information about the influence of the kernelsize, number of filters, and dense size. The results show that a goodforecast quality can already be achieved with basic CNN architectures.The method works not only for smooth sum loads of many hundredconsumers, but also for the load of apartment buildings KW - energy load forecasting KW - STLF KW - neural networks KW - CNN KW - con-volutional networks Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-16649 UR - https://arxiv.org/abs/1911.11536 UR - http://itise.ugr.es/ITISE2019_vol2.pdf SN - 978-84-17970-78-9 SP - 797 EP - 806 ER - TY - CHAP A1 - Lang, Christian A1 - Steinborn, Florian A1 - Steffens, Oliver A1 - Lang, Elmar Wolfgang ED - Valenzuela, O. ED - Rojas, F. ED - Herrera, L.J. ED - Pomares, H. ED - Rojas, I. T1 - Applying a 1D-CNN Network to Electricity Load Forecasting T2 - Theory and Applications of Time Series Analysis N2 - This paper presents a convolutional neural network (CNN) which can be used for forecasting electricity load profiles 36 hours into the future. In contrast to well established CNN architectures, the input data is one-dimensional. A parameter scanning of network parameters is conducted in order to gain information about the influence of the kernel size, number of filters and number of nodes. Furthermore, different dropout methods are applied to the CNN and are evaluated. The results show that a good forecast quality can already be achieved with basic CNN architectures, the dropout improves the forecast. The method works not only for smooth sum loads of many hundred consumers, but also for the load of single apartment buildings. KW - Energy load forecasting KW - STLF KW - Neural networks KW - CNN KW - Convolutional networks Y1 - 2020 U6 - https://doi.org/10.1007/978-3-030-56219-9_14 SP - 205 EP - 218 PB - Springer ER - TY - CHAP A1 - Keim, Vincent A1 - Nonn, Aida A1 - Lenz, D. A1 - Brinnel, Viktoria A1 - Münstermann, Sebastian T1 - Simulation of the ductile fracture behaviour of high toughness pipeline steels using combined damage models T2 - Proceedings of the conference on Technology for future and ageing piplines, Ghent, Belgium Y1 - 2018 ER - TY - CHAP A1 - Arrieta Castro, Abel A1 - Weber, Hans Ingo A1 - Rill, Georg T1 - Design an integrate vehicle control based-on hierarchical architecture for improve the performance of ground vehicles T2 - COBEM2015 : 23rd ABCM International Congress of Mechanical Engineering, December 6-11, 2015, Rio de Janeiro, RJ, Brazi Y1 - 2015 U6 - https://doi.org/10.20906/cps/cob-2015-1970 ER - TY - CHAP A1 - Dessort, Ronnie A1 - Chucholowski, Cornelius A1 - Rill, Georg ED - Bargende, Michael ED - Reuss, Hans-Christian ED - Wiedemann, Jochen T1 - Parametrical approach for modeling of tire forces and torques in TMeasy 5 T2 - 16. Internationales Stuttgarter Symposium, Automobil- und Motorentechnik, Bd. 1 N2 - For the dynamic simulation of on-road vehicles, the model-element “tire/road” is of special importance, according to its influence on the achievable results. Sufficient description of the interaction between tire and road is one of the most challenging tasks of vehicle modeling. Two groups of tire models can be classified: handling models and structural or high-frequency models. Usually, various assumptions are made in modeling vehicles as multibody systems. Therefore, in the interest of balanced modeling, the precision of the complete vehicle model should stand in reasonable relation to the performance of the applied tire model. Handling tire models are characterized by a useful compromise between user friendliness, model complexity, and efficiency in computation time on the one hand, and precision in representation on the other hand. Y1 - 2016 SN - 978-3-658-13254-5 U6 - https://doi.org/10.1007/978-3-658-13255-2_31 SP - 435 EP - 449 PB - Springer CY - Wiesbaden ER - TY - CHAP A1 - Briem, Ulrich ED - Dohm, Martin T1 - Fatigue Behaviour of Rope Wires T2 - Proceedings of the OIPEEC Conference, La Rochelle, France, 12th - 15th March 2019 N2 - The rope curve line of a tensioned rope can be described by means of the catenary curve. Opposed to that, the curved line of a free bent rope cannot be described by an analytical function. Practical applications of free bending are for example at tail ropes at the bottom of shaft in rope drives with traction sheaves. The question whether the maximum diameter of rope loop is small enough for the diameter of the shaft is highly interesting. In [1] a method was presented to calculate the curved line of free bent ropes numerically by help of energy methods. An analytical description of rope curve line would be very helpful. Beginning with the structure of a rope curve line of tensioned rope (catenary curve) and considering the influence of bending stiffness, the structure of an analytical equation for the curve line of a free bent rope will be developed. The main focus of this paper is to develop and to describe the structure of such an analytical equation. To get a first idea about the values of the constants in that analytical equation a few test results were evaluated. But these equations consider the static rope behavior only. Due to dynamic effects in the rope while running through the loop at the bottom of a shaft, pendulousness of the tail rope occurs. Y1 - 2019 UR - https://oipeec.org/products/mathematical-approach-to-curve-line-of-free-bent-ropes PB - OIPEEC ER - TY - CHAP A1 - Briem, Ulrich ED - Dohm, Martin T1 - Mathematical Approach to Curve Line of free bent Ropes T2 - Proceedings of the OIPEEC Conference, La Rochelle, France, 12th - 15th March 2019 N2 - The rope curve line of a tensioned rope can be described by means of the catenary curve. Opposed to that, the curved line of a free bent rope cannot be described by an analytical function. Practical applications of free bending are for example at tail ropes at the bottom of shaft in rope drives with traction sheaves. The question whether the maximum diameter of rope loop is small enough for the diameter of the shaft is highly interesting. In [1] a method was presented to calculate the curved line of free bent ropes numerically by help of energy methods. An analytical description of rope curve line would be very helpful. Beginning with the structure of a rope curve line of tensioned rope (catenary curve) and considering the influence of bending stiffness, the structure of an analytical equation for the curve line of a free bent rope will be developed. The main focus of this paper is to develop and to describe the structure of such an analytical equation. To get a first idea about the values of the constants in that analytical equation a few test results were evaluated. But these equations consider the static rope behavior only. Due to dynamic effects in the rope while running through the loop at the bottom of a shaft, pendulousness of the tail rope occurs. KW - Bending Stiffness KW - Catenary KW - Free Bending KW - Rope Curvature KW - Tail Ropes Y1 - 2019 UR - https://oipeec.org/products/mathematical-approach-to-curve-line-of-free-bent-ropes PB - OIPEEC ER - TY - CHAP A1 - Buschmann, Knut A1 - Briem, Ulrich ED - Dohm, Martin T1 - Ultra Deep Temperature Behaviour of Wire Rope and Rope Wires T2 - Proceedings of the OIPEEC Conference, La Rochelle, France, 12th - 15th March 2019 N2 - Mobile cranes are regularly operated in regions which experience ultra deep operating temperatures of down to -60?C (-76?F). In safety regulated work environments crane operations will be suspended simply because the lowest wire rope working temperature stated in the applicable standards is -40?C/F. Examples of ultra deep temperature wire rope application are shown in Figure 1.1 and 1.3. It should be noted that this paper is written in conjunction with a paper written by the co-author Ulrich Briem titled “Fatigue Behaviour of Rope Wires”, presented and published in unison with this one. In order to analyze the behaviour under ultra deep temperature conditions, tests on wire rope as well as on rope wires were carried out. In the following, static tensile and bending test results with rope and rope wires will be reported, which were carried out in conditions of down to -95?C (-139?F) as well as at room temperature. The conclusion is that the results of these tests can be adopted to crane wire rope as well. Y1 - 2019 UR - https://oipeec.org/products/ultra-deep-temperature-behaviour-of-wire-rope-and-rope-wires ER - TY - JOUR A1 - Lang, A. A1 - Monkman, Gareth J. T1 - An analysis of the electrical capacitance between two conducting spheres JF - Journal of Electrostatics N2 - Many modern composites consist of dielectric polymer matrices containing embedded spherical particles. These particles can be electrically conducting and often have magnetic properties. In order to accurately model and simulate such materials, precise calculation of the electrical capacitance between identically sized spheres is required. This is of particular relevance at microscopic dimensions where many smart material-based micro devices are concerned. This may appear trivial for a small number of particles. However, many methods or their analysis appear to be questionable or not applicable at reduced dimensions. In this work, the various methods of analysis are scrutinized before being compared with both simulation and direct measurements. It is surprising to note that of the many works investigated only 3 are in close agreement with both simulation and measurement. Graphical abstract This paper deals with the precise calculation of the electrical capacitance between two conducting spheres of equal, or near equal size.The calculations have been verified by both experimental measurements and simulation. Algorithms in MatLab (Octave) format have been included in the supporting information. KW - Capacitance between spheres KW - Calculation KW - Simulation Experiment Y1 - 2020 U6 - https://doi.org/10.1016/j.elstat.2020.103518 VL - 108 PB - Elsevier ER - TY - JOUR A1 - Chen, Rui A1 - Zhang, Zhuo A1 - Song, Ruizhou A1 - Fang, Cheng A1 - Sindersberger, Dirk A1 - Monkman, Gareth J. A1 - Guo, Jianglong T1 - Time-dependent electroadhesive force degradation JF - Smart Materials and Structures N2 - This paper concerns a comprehensive investigation of time-dependent electroadhesion (EA) force degradation. EA shear force tests on different object materials (a PET, glass, ABS, and wood plate) have shown that force degradation was dominated by residual polarization charges trapped in the EA pad dielectric rather than in the substrate dielectric from which the object to be prehended is made. In order to explain this dynamic physical phenomenon, a model of dielectric polarization and depolarization has been proposed. According to the derived relationship between EA force and discharge time, three different methods intended to mitigate this problem has been compared: (1) the natural discharge method, (2) the high voltage resistor discharge method, and (3) the discharge prior to field polarity reversal method. These methods are useful for generating repeatable and stable EA forces, which are required for the characterization of EA pads and their subsequent employment in material handling, mobile robot crawling and climbing tasks. Y1 - 2020 U6 - https://doi.org/10.1088/1361-665X/ab79b5 VL - 29 IS - 5 PB - IOP Publishing ER - TY - JOUR A1 - Sorokin, Vladislav V. A1 - Stepanov, Gennady V. A1 - Shamonin (Chamonine), Mikhail A1 - Monkman, Gareth J. A1 - Kramarenko, Elena Yu T1 - Magnetorheological behavior of magnetoactive elastomers filled with bimodal iron and magnetite particles JF - Smart materials and structures N2 - Magnetoactive elastomers (MAE) based on soft silicone matrices, filled with various proportions of large diameter ( approximately 50 mu m) iron and small diameter ( approximately 0.5 mu m) magnetite particles are synthesized. Their rheological behavior in homogeneous magnetic fields up to 600 mT is studied in detail. The addition of small magnetite particles facilitates fabrication of uniformly distributed magnetic elastomer composites by preventing aggregation and sedimentation of large particles during curing. It is shown that using the proposed bimodal filler particles it is possible to tailor various magnetorheological (MR) properties which can be useful for different target applications. In particular, either absolute or relative magnetorheological effects can be tuned. The value of the damping factor as well as the range of deformation amplitudes for the linear viscoelastic regime can be chosen. The interdependencies between different MR properties of bimodal MAEs are considered. The results are discussed in the model framework of particle network formation under the simultaneous influence of external magnetic fields and mechanical deformation. KW - damping factor KW - DAMPING PROPERTIES KW - FIELD KW - HYDROGELS KW - MAGNETOELASTIC BEHAVIOR KW - Magnetorheological effect KW - magnetorheological elastomer KW - mechanical hysteresis KW - Payne effect Y1 - 2017 U6 - https://doi.org/10.1088/1361-665X/26/3/035019 VL - 26 IS - 3 PB - IOP Publishing ER - TY - GEN A1 - Reindl, Andrea A1 - Eriksson, Lars A1 - Niemetz, Michael A1 - Sangyoung, Park A1 - Meier, Hans T1 - Control Concepts for a Decentralized Battery Management System Decentralized Battery Management System Global Control Level T2 - 16th International Renewable Energy Storage Conference (IRES2022), 20 to 22 September 2022, Düsseldorf Y1 - 2022 UR - https://www.researchgate.net/publication/363769042_Control_Concepts_for_a_Decentralized_Battery_Management_System_Decentralized_Battery_Management_System_Global_Control_Level PB - Eurosolar ER - TY - CHAP A1 - Körner, Patrick A1 - Reindl, Andrea A1 - Meier, Hans A1 - Niemetz, Michael T1 - A Theoretical Comparison of Different Virtual Synchronous Generator Implementations on Inverters T2 - 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe): 05-09 September 2022, Hannover, Germany N2 - The goal to overcome the global climate crisis leads to a rising demand for the usage of Renewable Energy Sources (RES). Decentralized control strategies are needed to allow the integration of RES into the grid. The Virtual Synchronous Generator (VSG) is proposed as a method to add virtual inertia to the grid by emulating the rotating mass of a Synchronous Generator (SG) on the control algorithm of an inverter. This paper presents the VSG control structure as well as the mathematical description in a unified form. Due to the fact that classical droop control can be seen as a special form of the VSG, their correlation is highlighted by evaluating the steady state output characteristics of the inverter. Furthermore, a theoretical comparison between different VSG topologies, including the VISMA-Method 2 and the synchronverter, is given. In order to achieve better voltage stability, principles to add virtual impedance to the inverter's output are described. Y1 - 2022 UR - https://ieeexplore.ieee.org/document/9907497 PB - IEEE ER - TY - CHAP A1 - Paredes, Marcelo A1 - Keim, Vincent A1 - Nonn, Aida A1 - Wierzbicki, Tomasz T1 - Effect of plasticity parameter on the crack propagation in steel pipelines T2 - Proceedings of the conference on Technology for future and ageing piplines, Ghent, Belgium Y1 - 2018 ER - TY - JOUR A1 - Haug, Sonja A1 - Vetter, Miriam A1 - Weber, Karsten T1 - Gebäudesanierung zwischen Energieeffizienz und Sozialverträglichkeit BT - Zwei empirische Fallstudien JF - TATuP - Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis N2 - Die Akzeptanz unter Bewohnern und Bewohnerinnen gewinnt bei hoch komplexen, technisch anspruchsvollen energetischen Sanierungen als „Innovationsmotor“ zunehmend an Relevanz. Der Beitrag basiert auf zwei Fallstudien zur partizipativen Nutzereinbindung bei energetischen Sanierungen im genossenschaftlichen Wohnbau historischer Stadtquartiere in Regensburg. Neben einer sozialverträglichen Sanierung wurde jeweils ein hohes Maß an Energieeffizienz bei den technischen Lösungen ange-strebt. Haushaltsbefragungen und qualitative Interviews zeigen die hohe Akzeptanz von Sanierungsmaßnahmen, sofern die Senkung der Energiekosten die erhöhte Miete kompensiert. Abschließend werden Akzeptanzfaktoren wie Partizipation, Vertrauen, Sozialverträglichkeit und Autarkie erörtert. T2 - Building restoration between energy efficiency and user acceptance KW - Altbaumodernisierung KW - Energieeinsparung KW - Sozialverträglichkeit KW - Fallstudie KW - energy-efficient building restoration KW - user acceptance KW - household survey KW - historic quarter KW - renewable energy Y1 - 2020 U6 - https://doi.org/10.14512/tatup.29.3.56 SN - 2567-8833 VL - 29 IS - 3 SP - 56 EP - 63 PB - oekom-Verlag ER - TY - CHAP A1 - Weber, Karsten A1 - Haug, Sonja T1 - Automatisiertes Fahren: Evolutionäre Weiterentwicklung statt Disruption T2 - Vierte Jahreskonferenz des Netzwerks INDIGO zum Thema "Mobilität", 23.11.2018, , TH Deggendorf Y1 - 2018 ER - TY - JOUR A1 - Bringout, Gaël A1 - Erb, Wolfgang A1 - Frikel, Jürgen T1 - A new 3D model for Magnetic Particle Imaging using realistic magnetic field topologies for algebraic reconstruction JF - Inverse Problems N2 - We derive a new 3D model for magnetic particle imaging (MPI) that is able to incorporate realistic magnetic fields in the reconstruction process. In real MPI scanners, the generated magnetic fields have distortions that lead to deformed magnetic low-field volumes with the shapes of ellipsoids or bananas instead of ideal field-free points (FFP) or lines (FFL), respectively. Most of the common model-based reconstruction schemes in MPI use however the idealized assumption of an ideal FFP or FFL topology and, thus, generate artifacts in the reconstruction. Our model-based approach is able to deal with these distortions and can generally be applied to dynamic magnetic fields that are approximately parallel to their velocity field. We show how this new 3D model can be discretized and inverted algebraically in order to recover the magnetic particle concentration. To model and describe the magnetic fields, we use decompositions of the fields in spherical harmonics. We complement the description of the new model with several simulations and experiments, exploring the effects of magnetic fields distortion and reconstruction parameters on the reconstruction. Y1 - 2020 U6 - https://doi.org/10.1088/1361-6420/abb446 VL - 36 IS - 12 PB - IOP Publishing ER - TY - THES A1 - Rauch, Johannes T1 - Entwicklung eines Regelverfahrens für einen optimierten und zentralen Blindleistungsabruf zur Beeinflussung des Blindleistungshaushalts von Mittelspannungsnetzen unter Einhaltung von Netzrestriktionen N2 - Die Energiewende führt zu neuen Herausforderungen für Verteilungsnetzbetreiber hinsichtlich der Er-bringung von Systemdienstleistungen, der Integration weiterer Erzeugungsanlagen und Lasten sowie der Gewährleistung einer hohen Versorgungssicherheit und normgerechten Spannungsqualität. Die De-ckung der auftretenden Blindleistungsbedarfe seitens der Netzbetriebsmittel, Verbraucher und Erzeu-gungsanlagen gewinnt durch den Wegfall der Großkraftwerke für Netzbetreiber zunehmend an Bedeu-tung. Das Projekt SyNErgie beschäftigt sich diesbezüglich mit der Entwicklung neuartiger Blindleis-tungsmanagementsysteme für Mittelspannungsnetze. Ziel ist es, das bisher ungenutzte, freie Blindleis-tungspotential betrieblicher Kompensationsanlagen und dezentraler Erzeugungsanlagen (allgemein: Blindleistungsquellen) zu nutzen, um die Blindleistungsänderungsfähigkeit eines Verteilungsnetzes zu erhöhen. Diese Arbeit beschäftigt sich mit der Entwicklung eines zentralen Blindleistungsregelsystems, bei dem Blindleistungsquellen auf Basis von „Optimal Power Flow“-Berechnungen über eine zentrale Recheninstanz angesteuert werden. Zum Einsatz kommt dabei ein Optimierungsalgorithmus, der auf Basis des aktuellen Netzzustandes (Spannungs- und Auslastungsreserven) und des aktuellen Blindleis-tungspotentials der Blindleistungsquellen einen bedarfsoptimalen Abruf koordiniert. Das zentrale Re-gelverfahren wird in Netzmodellen verschiedenartiger Mittelspannungsnetzgruppen und unterschiedli-cher Art und Anzahl von Blindleistungsquellen angewendet sowie im Hinblick auf variierende Zielvor-gaben und Randbedingungen evaluiert und diskutiert. KW - Netzbetriebsführung KW - Blindleistungsmanagement KW - Optimierung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-6595 ER - TY - THES A1 - Urban, Johannes T1 - Photoelektrisches Direktladen von Elektrofahrzeugen im Inselbetrieb N2 - Die Arbeit befasst sich mit der Ladung von Elektrofahrzeugen durch Solarenergie in einem Inselsystem. Diese Art der Ladung entlastet die Netze und hat einen sehr hohen Leistungswirkungsgrad. Es wurde ein Prototyp einer Direkt-ladestation gebaut, welche verschiedene Elektrofahrzeuge mit einem neuartigen Verfahren aufladen kann. Sie enthält einen optionalen Pufferakkumulator und einen Vollbrücken-Gegentaktwandler für die Ladung bei schlechter Solarleistung. Ein Teil der Arbeit behandelt ausführlich die Auslegung, die Komponenten und bisher undokumentiertes Verhalten von Gegentaktwandlern. Des Weiteren wird das Prinzip der Solardirekt-ladung und deren Umsetzung sowie die Umsetzung des Gesamtsystems beschrieben. Es folgt ein Kapitel zur Wirtschaftlichkeit der Solardirektladung mit Handlungsempfehlungen. Insgesamt lässt sich schließen, dass Solardirektladung bei nutzungsorientierter Auslegung der Anlage und langer Laufzeit wirtschaftlich ist. This work addresses the charging of electric vehicles with solar power in an off-grid system. Charging this way reduces the stress on the grid and has a very high power efficiency. A prototype of a direct charging station was built which is able to charge several different electric vehicles in a novel way. It includes an optional buffer battery and a full bridge converter for being able to charge electric vehicles at times o flow solar power. One chapter explains in detail the design, the components and so far undocumented properties of full and half bridge converters. The principle and the implementation of direct solar charging and the implementation of the whole system is described. The last chapter covers the cost effectiveness of solar chargin gas well as recommendations. All in all it can be stated that solar direct charging is ecomomically advantageous if it is projected according to the user’s demand. KW - Fotovoltaik KW - Stromtankstelle KW - Elektrofahrzeug KW - Pufferspeicher KW - Photovoltaik KW - Ladestation KW - Elektrofahrzeug KW - Pufferspeicher KW - Vollbrückenwandler Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-20285 ER - TY - JOUR A1 - Keim, Vincent A1 - Marx, P. A1 - Nonn, Aida A1 - Münstermann, Sebastian T1 - Fluid-structure-interaction modeling of dynamic fracture propagation in pipelines transporting natural gases and CO2-mixtures JF - International Journal of Pressure Vessels and Piping N2 - As part of current design standards, the Battelle Two-Curve Model (BTCM) is still widely used to predict and secure ductile crack arrest in gas transmission pipelines. For modern linepipe steels and rich natural gases or CO2 mixtures, the BTCM might lead to incorrect predictions. On the one hand, it suffers from the insufficient description of the individual physical processes in the pipe material and fluid itself. Furthermore, the model does not account for fluid-structure-interaction (FSI) effects during simultaneous running-ductile fracture (RDF) and mixture decompression. Numerical FSI models allow for a more sophisticated, coupled analysis of the driving forces for the failure of pipelines. This paper deals with the development of an FSI model for the coupled prediction of 3D pressure profiles acting on the inner pipe wall during crack propagation. The coupled Euler-Lagrange (CEL) method is used to link the fluid and structure models. In a Lagrange formulation, the modified Bai-Wierzbicki (MBW) model describes the plastic deformation and ductile fracture as a function of the underlying stress/strain conditions. The fluid behavior is calculated in a 3D model space by Euler equations and the GERG-2008 reference equation of state (EOS). The coupled CEL model is used to predict the RDF in small-diameter pipe sections for different fluid mixtures. The calculated 3D pressure distributions ahead and behind the running crack tip (CT) significantly differ in axial and circumferential directions depending on the mixture composition. The predicted FSI between the pipe wall and fluid decompression in 3D CEL/FSI model provides reliable knowledge about the pressure loading of the pipeline during RDF. KW - Fluid-Struktur-Wechselwirkung KW - Rissausbreitung KW - Pipeline KW - Gas KW - Pipeline failure KW - Fluid-structure-interaction KW - CO2 decompression KW - Running ductile fracture Y1 - 2019 U6 - https://doi.org/10.1016/j.ijpvp.2019.103934 VL - 175 IS - August PB - Elsevier ER - TY - CHAP A1 - Schorr, Philipp A1 - Böhm, Valter A1 - Zentner, Lena A1 - Zimmermann, Klaus T1 - Dynamical Investigation of Crawling Motion System based on a Multistable Tensegrity Structure T2 - Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics : Porto, Portugal, 29.07.2018 - 31.07.2018 N2 - The basic idea of this article is the utilization of the multistable character of a compliant tensegrity structure to control the direction of motion of a crawling motion system. A crawling motion system basing on a two-dimensional tensegrity structure with multiple stable equilibrium states is considered. This system is in contact with a horizontal plane due to gravity. For a selected harmonic actuation of the system small oscillations around the given equilibrium state of the tensegrity structure occur and the corresponding uniaxial motion of the system is evaluated. A change of the equilibrium state of the tensegrity structure yields to novel configuration of the entire system. Moreover, the motion behavior of the novel configuration is totally different although the actuation strategy is not varied. In particular, the direction of motion changes. Therefore, this approach enables a uniaxial bidirectional crawling motion with a controllable direction of motion using only one actuat or with a selected excitation frequency. Y1 - 2018 SN - 978-989-758-321-6 U6 - https://doi.org/10.5220/0006852701220130 SP - 122 EP - 130 PB - SCITEPRESS ER - TY - JOUR A1 - Schorr, Philipp A1 - Böhm, Valter A1 - Zentner, Lena A1 - Zimmermann, Klaus T1 - Motion characteristics of a vibration driven mobile tensegrity structure with multiple stable equilibrium states JF - Journal of Sound and Vibration N2 - A novel type of a vibration driven motion system based on a compliant tensegrity structure with multiple stable equilibrium states is considered. These equilibrium configurations correspond to different prestress states with different dynamical properties. Therefore, the motion characteristics can be varied by changing the equilibrium state. For the application in the fields of mobile robotics, these discrete adjustable dynamics are advantageous. The vibration modes of the structure as well as the corresponding motion characteristics of the system can be adapted to the given environmental conditions in order to ensure a reliable motion. In this paper, dynamical investigations of an exemplary two-dimensional multistable tensegrity structure are considered. For the chosen parameter values the structure features two relevant equilibrium configurations. The resulting motion system is in contact to a horizontal plane due to gravity and the actuation is realized by the harmonic variation of the length of a single tensioned member. The motion of the system is simulated for various actuation frequencies with the different equilibrium states as an initial configuration. A uniaxial or a planar movement occurs depending on the selection of the actuated member within the tensegrity structure. The steady state motion is evaluated regarding motion characteristics like the steady state velocity. Moreover, the influences on the motion behavior caused by the different equilibrium states as an initial condition are emphasized. (C) 2018 Elsevier Ltd. All rights reserved. KW - Compliant tensegrity structure KW - LOCOMOTION KW - Multistability KW - Vibration driven motion Y1 - 2018 U6 - https://doi.org/10.1016/j.jsv.2018.09.019 VL - 437 IS - December SP - 198 EP - 208 PB - Elsevier ER - TY - CHAP A1 - Böhm, Valter A1 - Schorr, Philipp A1 - Zimmermann, Klaus A1 - Zentner, Lena T1 - An Approach to the Estimation of the Actuation Parameters for Mobile Tensegrity Robots with Tilting Movement Sequences T2 - 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR); 20-22 June 2018; Delft, Netherlands N2 - This paper deals with the locomotion by tilting sequences of shape-variable compliant tensegrity structures. The shape of these structures is controlled by manipulating their prestress state. The tensegrity structure is tilting as consequence of a suitable variation of its shape. By multiple repetition of such tilting sequences a motion is generated. Quasi-static considerations for the considered structures are presented in order to estimate the actuation parameters. For a proper number of actuators this quasi-static approach enables an analytical calculation of the actuation parameters of the structure in order to control the geometrical configuration as required. As an example a two-dimensional tensegrity structure which is in contact with a horizontal plane due to gravity is considered. By successive tilting sequences a uniaxial motion results. The excitation of the structure is calculated for a given change of shape with the quasi-static analysis. The according results are compared with transient dynamic simulations. Qualitative conclusions about the motion behavior and the usability of the quasi-static approach are given. KW - mobile robots KW - motion control KW - robot dynamics KW - structural engineering Y1 - 2018 U6 - https://doi.org/10.1109/REMAR.2018.8449871 SP - 1 EP - 8 PB - IEEE ER - TY - CHAP A1 - Carrillo Li, Enrique Roberto A1 - Schorr, Philipp A1 - Kaufhold, Tobias A1 - Rodríguez Hernández, Jorge Antonio A1 - Zentner, Lena A1 - Zimmermann, Klaus A1 - Böhm, Valter ED - Awrejcewicz, Jan ED - Kaźmierczak, Markek ED - Olejnik, Paweł T1 - Kinematic analysis of the rolling locomotion of mobile robots based on tensegrity structures with spatially curved compressed components T2 - Applicable Solutions in Non-Linear Dynamical Systems; 15th International Conference "Dynamical Systems - Theory and Applications" (DSTA 2019, 2-5 December, 2019, Lodz, Poland N2 - In this work, a tensegrity structure with spatially curved members is applied as rolling locomotion system. The actuation of the structure allows a variation of the originally cylindrical shape to a conical shape. Moreover, the structure is equipped with internal movable masses to control the position of the center of mass of the structure. To control the locomotion system a reliable actuation strategy is required. Therefore, the kinematics of the system considering the nonholonomic constraints are derived in this paper. Based on the resulting insight in the locomotion behavior a feasible actuation strategy is designed to control the trajectory of the system. To verify this approach kinematic analyses are evaluated numerically. The simulation data confirm the path following due to an appropriate shape change of the tensegrity structure. Thus, this system enables a two-dimensional rolling locomotion. The use of mechanically compliant tensegrity structures in mobile robots is an attractive research topic, due to the possibility to adjust their mechanical properties reversibly during locomotion. In this paper rolling locomotion of mobile robots based on simple tensegrity structures, consisting of three compressed spatially curved members connected to a continuous net of prestressed tensional members, is discussed. Planar locomotion of these robots is induced by the movement of internal masses. The movement direction can be changed by changing the robot's shape between a cylinder and a truncated cone. The paper focuses on the description of the kinematics of these systems with respect to the shape change. KW - Inverse kinematics KW - Nonholonomic mechanics KW - Tensegrity structure Y1 - 2019 UR - http://212.191.87.54:1616/k16/awrejcewicz/publikacje/T2.pdf SN - 978-83-66287-30-3 SP - 335 EP - 344 PB - Wydawnictwo Politechniki Łódzkiej CY - Łódź, Polen ER - TY - CHAP A1 - Nonn, Aida A1 - Paredes, Marcelo A1 - Keim, Vincent A1 - Wierzbicki, Tomasz T1 - Comparison of Fracture Models to Quantify the Effects of Material Plasticity on the Ductile Fracture Propagation in Pipelines T2 - Proceedings of the 2018 12th International Pipeline Conference, Volume 3: Operations, Monitoring, and Maintenance, Materials and Joining, September 24-28, 2018, Calgary, Alberta, Canada N2 - Various numerical approaches have been developed in the last years aimed to simulate the ductile fracture propagation in pipelines transporting CO2 or natural gas. However, a reliable quantification of the influence of material plasticity on the fracture resistance is still missing. Therefore, more accurate description of the material plasticity on the ductile fracture propagation is required based on a suitable numerical methodology. In this study, different plasticity and fracture models are compared regarding the ductile fracture propagation in X100 pipeline steel with the objective to quantify the influence of plasticity parameters on the fracture resistance. The plastic behavior of the investigated material is considered by the quadratic yield surface in conjunction with a non-associated quadratic plastic flow potential. The strain hardening can be appropriately described by the mixed Swift-Voce law. The simulations of ductile fracture are conducted by an uncoupled, modified Mohr-Coulomb (MMC) and the micromechanically based Gurson-Tvergaard-Needleman (GTN) models. In contract to the original GTN model, the MMC model is capable of describing ductile failure over wide range of stress states. Thus, ductile fracture resistance can be estimated for various load and fracture scenarios. Both models are used for the simulation of fracture propagation in DWTT and 3D pressurized pipe sections. The results from the present work can serve as a basis for establishing the correlation between plasticity parameters and ductile fracture propagation. Y1 - 2018 U6 - https://doi.org/10.1115/IPC2018-78366 ER - TY - JOUR A1 - Keim, Vincent A1 - Paredes, Marcelo A1 - Nonn, Aida A1 - Münstermann, Sebastian T1 - FSI-simulation of ductile fracture propagation and arrest in pipelines BT - Comparison with existing data of full-scale burst tests JF - International Journal of Pressure Vessels and Piping N2 - The fracture propagation and arrest control for pipelines transporting rich natural gases and high vapor pressure liquids is based on the Battelle Two-Curve Model (BTCM). Distinct limitations of this model were demonstrated for past and modern steels and gas mixtures. These can be related to the insufficient description of individual physical processes and interactions between the pipe material and transported mixture during the running ductile fracture. In the past, fluid-structure interaction (FSI) models enabled a more sophisticated, coupled analysis of the failure scenario. To quantify their capability of describing the multi-physical processes, the FSI models need to be verified by experimental data from full-scale burst tests (FSBT). Therefore, this paper deals with the simulation of five FSBTs from the literature on API grade X65 pipes with different pipe geometries, mixtures and initial conditions. The FSI is modeled by the coupled Euler-Lagrange (CEL) method. The modified Mohr-Coulomb (MMC) model is implemented in the CEL framework to describe the deformation and ductile fracture in the X65/L450 pipes. 3D Euler equations are used to calculate the mixture decompression with the GERG-2008 equation of state defining the volumetric behavior of a CO2-rich mixture, CH4 and H2. The extended model considers the effect of soil backfill on the pipe deformation and inertia. The numerical predictions agree well with the experimental findings in terms of the crack propagation speed and arrest length underlining the capability of the developed numerical tool. KW - Running ductile fracture KW - Crack arrest KW - Fluid-structure interaction KW - MMC model KW - CO2 decompression KW - Bruchmechanik KW - Fluid-Struktur-Wechselwirkung KW - Pipeline KW - Simulation Y1 - 2020 U6 - https://doi.org/10.1016/j.ijpvp.2020.104067 VL - 182 IS - May PB - Elsevier ER - TY - JOUR A1 - Keim, Vincent A1 - Nonn, Aida A1 - Münstermann, Sebastian T1 - Application of the modified Bai-Wierzbicki model for the prediction of ductile fracture in pipelines JF - International Journal of Pressure Vessels and Piping N2 - The complex mechanical and corrosive loads of modern pipeline systems transporting oil, natural gas and CO2 impose steadily increasing requirements on material properties. The majority of current design standards still limit the application of modern high toughness linepipe steels due to the simple specification of material requirements in terms of energy levels from Charpy impact or Battelle Drop-Weight-Tear (BDWT) tests. In consequence, research activities have been conducted recently aiming at developing modified or novel experimental methods for the characterization of the ductile fracture behavior. To quantify the effects of various parameters on fracture behavior and derive suitable correlations, it is necessary to accompany these activities by numerical simulations with appropriate ductile damage models. In this paper, the MBW model is applied to study the structural behavior of pipelines in ductile fracture regime. Due to its precise incorporation of the underlying load conditions, the damage model is successfully used to simulate the slant fracture behavior in Battelle Drop weight tear test specimens and pipe sections. In comparison to ductile damage models applied in former studies, namely the Gurson-Tvergaard-Needleman and Cohesive Zone model, the presented numerical methodology allows for a more detailed investigation of loading, material and geometry effects on fracture and crack arrest behavior of pipelines. KW - Running ductile fracture KW - Stress state conditions KW - MBW model KW - Pipeline failure KW - Slant fracture Y1 - 2019 U6 - https://doi.org/10.1016/j.ijpvp.2019.02.010 VL - 171 IS - March SP - 104 EP - 116 PB - Elsevier ER - TY - CHAP A1 - Steininger, Peter A1 - Gaderer, Matthias A1 - Dawoud, Belal T1 - Transient performance of a solar selective thermal insulation system T2 - 16th Advanced Building Skins Conference & Expo, 21 – 22/10/2021, Bern, Switzerland N2 - A prototype of a thermal insulation system to offer high selectivity of the solar gain regarding the solar incidence angle (SATIS) was applied to a typical solid brick masonry for existing buildings in Germany. Light conducting elements (LCEs) inclined at 19 ° were incorporated in SATIS, which equals the average solar noon angle in southern Germany during winter. The entire wall construction was experimentally investigated in a differential climatic chamber test bench at four different irradiation angles according to a dynamic test procedure. In addition, a conventional wall construction (CWC) has been measured. At SATIS’ design angle of 19 °, the SATIS wall construction shows a solar gain (SG) of 394.5 Wh/m², while the SG of the CWC amounts to only 25.4 Wh/m². The validated transient model of the SATIS wall construction showed that, at the end of the irradiation period of the dynamic test procedure (8 h), the solar heat penetrates to a depth of 253 mm and 111 mm inside the 385 mm thick brick wall masonry at the irradiation angles of 19 ° and 50 °, respectively. During the same time, the stored solar energy at 50 ° amounts to only 24.4 % of that stored at 19 °. Y1 - 2021 UR - https://www.researchgate.net/publication/355771950_Transient_performance_of_a_solar_selective_thermal_insulation_system PB - Advanced Buidling Skins GmbH ER - TY - JOUR A1 - Schächinger, J. A1 - Brückl, Oliver A1 - Becker, Mark A1 - Lechner, Raphael T1 - Results of the Research Project Optibiosy: Biogas plants as stabilizers of the power system? JF - BWK ENERGIE T2 - Biogasanlagen als Stabilisatoren des Stromsystems? Y1 - 2022 SN - 1436-4883 VL - 74 IS - 11-12 SP - 34 EP - 39 PB - VDI-Verlag CY - Düsseldorf ER - TY - RPRT A1 - Klitsman, Maksym A1 - Staudacher, Lars A1 - Brückl, Oliver A1 - Eller, Johannes A1 - Brey, Ludwig A1 - Eigenstetter, Florian T1 - neos - NetzEntwicklungsOffensive Strom - Schlussbericht BT - Projektlaufzeit: 01.09.2017 – 31.12.2021; gefördert durch Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie N2 - Im Zuge der Energiewende werden die erneuerbaren Energien zur tragenden Säule unserer Stromversorgung. Bis 2025 sollen bundesweit 40-45 % des Stroms aus erneuerbaren Quellen stammen, bis 2050 sogar 80 %. Dabei wird der erzeugte Strom hauptsächlich aus Wind und Sonne stammen. Im Norden der Bundesrepublik wird Wind die Erzeugung dominieren, während im Süden, insbesondere in Bayern der Strom vornehmlich aus Photovoltaik gewonnen werden wird. Um die Ziele der Energiewende zu erreichen, wird neben den ausreichenden Erzeugungskapazitäten auch eine leistungsfähige Infrastruktur zur Verteilung und Nutzung des erneuerbaren Stroms notwendig sein. Planbarkeit und Sicherung der Versorgungsqualität bei zunehmenden Anteilen von volatiler Erzeugung werden dabei zu einer immer größeren Herausforderung. Das Projekt neos hat im engen Verbund mit den beteiligten Partnern wichtige tagesaktuelle Fragestellungen wissenschaftlich erörtert und untersucht, die sich durch die laufende Transformation des Energiesystems und den rasanten Ausbau der Anlagen zur erneuerbaren Energieerzeugung den Projektpartnern stellen. KW - Intelligentes Stromnetz KW - Energiewende KW - Netzplanung KW - Netzausbau KW - Elektromobilität KW - Spannungsqualität KW - regelbarer Ortsnetztransformator KW - Oberschwingungsbelastung KW - Netzberechnung KW - intelligente Netzbetriebsmittel Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-45248 ER - TY - CHAP A1 - Haumer, Anton A1 - Kral, Christian T1 - The New EDrives Library: A Modular Tool for Engineering of Electric Drives T2 - Proceedings of the 10th International Modelica Conference, March 10-12, 2014, Lund, Sweden N2 - Simulation is an indispensable tool for the engineering of systems containing electric drives. Depending on the design phase and the engineering task different levels of modeling details are required: proof of concept; investigation of energy and power consumption; design of control; etc. The new EDrives library provides three levels of abstraction for inverters: quasi static (neglecting electrical transients); averaging (neglecting switching effects) and switching – for serving different demands. The inverters can feed the machine models of the Modelica Standard Library: Modelica.Magnetic.FundamentalWave and the new Modelica.Magnetic.QuasiStatic.FundamentalWave. The EDrives library copes with arbitrary phase numbers and can be easily extended to develop new control algorithms. In this publication the structure of the library and the implemented control principles are presented. Furthermore; examples comparing the three different levels of abstraction are included. KW - control KW - Electric machines and drives KW - multi phase KW - power electronics KW - quasi static KW - switching KW - thermal behavior KW - transient Y1 - 2014 SN - 978-91-7519-380-9 U6 - https://doi.org/10.3384/ecp14096155 SN - 1650-3686 SN - 1650-3740 SP - 155 EP - 163 PB - Linköping University Electronic Press ER - TY - JOUR A1 - Gragger, Johannes V. A1 - Haumer, Anton A1 - Einhorn, Markus T1 - Averaged Model of a Buck Converter for Efficiency Analysis JF - Engineering Letters N2 - In this work a buck converter model for multidomain simulations is proposed and compared with a state-of-the-art buck converter model. In the proposed model no switching events are calculated. By avoiding the computation of the switching events in power electronic models the processing time of multidomain simulations can be decreased significantly. The proposed model calculates any operation point of the buck converter in continuous inductor current conduction mode (CICM) while considering the conduction losses and switching losses. It is possible to utilize the proposed modeling approach also for other dc-to-dc converter topologies. Laboratory test results for the validation of the proposed model are included. Y1 - 2010 UR - https://www.researchgate.net/profile/Markus-Einhorn/publication/41668038_Averaged_Model_of_a_Buck_Converter_for_Efficiency_Analysis/links/55100b490cf21287416cb105/Averaged-Model-of-a-Buck-Converter-for-Efficiency-Analysis.pdf VL - 18 CY - Hong Kong ER - TY - THES A1 - Heberl, Michael T1 - Power-to-Ammoniak BT - Möglichkeiten zur erneuerbaren Elektrifizierung und Dekarbonisierung der Ammoniakindustrie N2 - Ammoniak ist Grundbaustein für die Herstellung von Düngemitteln und dementsprechend für die Nahrungsmittelindustrie unentbehrlich. Ca. 40-50 % der Weltbevölkerung sind von Nahrungsmitteln abhängig, die mit Hilfe von Ammoniakdüngern hergestellten wurden. Weltweit wurden alleine im Jahr 2015 181 Mt Ammoniak produziert, wodurch die Ammoniakherstellung mit 1,2 % am gesamten Energieverbrauch der Welt beteiligt ist und für 0,93 % der globalen Treibhausgasemissionen zuständig ist. Auch in Zeiten der Energiewende ist diese Grundstoffchemikalie unentbehrlich, ist aber auf einem anderen Wege herzustellen. Ziel dieser Arbeit ist die Darstellung verschiedener Möglichkeiten zur erneuerbaren Elektrifizierung und Dekarbonisierung der Ammoniakindustrie, wodurch der Einsatz von herkömmlichen Energieträgern wie Erdgas, Kohle und Öl negiert werden kann. Ammoniak wird aktuell über das Haber-Bosch-Verfahren aus den Rohstoffen Erdgas, Kohle und Öl gewonnen. Bei diesem Verfahren wird über einen Primär- und Sekundärreformer Wasserstoff und Stickstoff gewonnen. Andere Gasbestandteile werden gefiltert oder umgewandelt, um schädliche Katalysatorgifte (CO, H2S) zu entfernen. Im Reaktor wird an Eisenkatalysatoren aus Wasserstoff und Stickstoff letztendlich Ammoniak hergestellt. Der Energieverbrauch des Haber-Bosch Verfahrens schwankt zwischen 7,8 MWh/t NH3 für eine moderne und sehr effiziente Anlage mit Erdgas und 13,6 MWh/t NH3 für eine alte mit Kohle betriebene Anlage. An Emissionen treten pro hergestellter Tonne Ammoniak je nach Rohstoff 1,6-3,8 t CO2-eq auf. Neben der Biomassevergasung gibt es mehrere rein elektrische Ansätze zur Ammoniakherstellung. Die unterschiedlichen elektrochemischen Ansätze zur direkten Ammoniaksynthese, wie der Einsatz von Flüssigsalzelektrolyten oder Feststoffelektrolyten, wurden in Abschnitt 3.2 vorgestellt. Einige dieser Technologien zeigen vielversprechende Ansätze, sind jedoch zum aktuellen Zeitpunkt noch zu weit von einem industriellen Einsatz entfernt. Der Einsatz der Wasserelektrolyse in Kombination mit einer Luftzerlegungseinheit ist die derzeit vielversprechendste Methode Ammoniak auf einem strombasierten und dekarbonisierten Wege herzustellen. Bei diesem System wird Wasserstoff im Elektrolyseur und Stickstoff in der Luftzerlegungseinheit hergestellt. Die Ammoniaksynthese findet hierbei in einem Reaktor nach Vorbild des Haber-Bosch-Prozesses statt. Mit diesem System ist ein Energieverbrauch von ca. 10 MWh/t NH3 notwendig. Durch den Einsatz von rein erneuerbar hergestelltem Strom als Energieträger lässt sich mit diesem Technologiezusammenschluss die Ammoniakherstellung komplett Emissionsfrei gestalten. Dadurch können alleine in Deutschland jährlich bis zu 7,8 Mt CO2-eq eingespart werden. Eine zukünftige Umstrukturierung der Ammoniakherstellung und der gesamten chemischen Industrie ist unabdingbar. Diese kann aber nur parallel mit einem Ausbau erneuerbarer Energien umgesetzt werden. Mit der Wasserelektrolyse und der Luftzerlegungseinheit sind die technischen Möglichkeiten für diesen Umbau bereits heute gegeben und brauchen nur noch eingesetzt werden. N2 - Ammonia is a fundamental raw material for the production of fertilizer and essential for the food industry. About 40-50 % of the world population depends on food produced with the assistance of ammonia fertilizers. In 2015 181 Mt ammonia was produced worldwide. The ammonia production is responsible for 1,2 % of the global energy consumption and 0,93 % of the global greenhouse gas emissions. Even in times of the energy transition this base chemical is essential, although it should be produced on a different way. It is therefore the objective of this work to show different possibilities for an electrified and decarbonised ammonia industry powered by renewable energies. As a result the use of conventional energy carriers like gas, coal and oil will be negotiated. Ammonia is produced with the Haber-Bosch process from gas, coal and oil as feedstock. In this process a primary and a secondary reformer is used to produce hydrogen and nitrogen. Other gaseous components are filtered and converted to remove catalyst poisons (CO, H2S). In the reactor iron catalysts are used to produce ammonia out of hydrogen and nitrogen. The energy consumption of the Haber-Bosch process varies between 7,8 MWh/t NH3 for a modern and really efficient gas based plant and 13,6 MWh/t NH3 for an old coal based plant. The production of one ton ammonia causes emissions between 1,6-3,8 t CO2-eq based on the used feedstock. Beside biomass gassing there are several electric technologies to produce ammonia. The different electrochemical technologies to synthesize ammonia on a direct way, like solid state electrolysis or molten salt electrolytes, are shown in section 3.2. Some of these technologies show a good potential, but all of them are far off the use in the industry. The use of an electrolyser in combination with an air separation unit is the most promising way to produce ammonia on an electrified and decarbonised way. In this system hydrogen is produced in the electrolyser and nitrogen in the air separation unit. The ammonia synthesis works in a reactor based on the Haber-Bosch process. Using this system the production of one ton ammonia has an energy consumption of 10 MWh. With the use of renewable energies in this combination of technologies a greenhouse gas emissions free ammonia production is possible. In Germany alone 7,8 t CO2-eq can be saved. A future reorganization of the ammonia industry and the complete chemical industry is indispensable. A parallel expand of renewable energies is necessary to realize this approach. With electrolysers and air separation units the technical possibilities for this reconstruction are already given. All that remains is the implementation of them. KW - Ammoniaksynthese KW - Haber-Bosch KW - Emissionen KW - Erneuerbare Energien Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-22167 ER - TY - JOUR A1 - Gärtner, Sebastian A1 - Marx-Schubach, Thomas A1 - Gaderer, Matthias A1 - Schmitz, Gerhard A1 - Sterner, Michael T1 - Techno-Economic Analysis of Carbon Dioxide Separation for an Innovative Energy Concept towards Low-Emission Glass Melting JF - energies N2 - The currently still high fossil energy demand is forcing the glass industry to search for innovative approaches for the reduction in CO2 emissions and the integration of renewable energy sources. In this paper, a novel power-to-methane concept is presented and discussed for this purpose. A special focus is on methods for the required CO2 capture from typical flue gases in the glass industry, which have hardly been explored to date. To close this research gap, process simulation models are developed to investigate post-combustion CO2 capture by absorption processes, followed by a techno-economic evaluation. Due to reduced flue gas volume, the designed CO2 capture plant is found to be much smaller (40 m3 absorber column volume) than absorption-based CO2 separation processes for power plants (12,560 m3 absorber column volume). As there are many options for waste heat utilization in the glass industry, the waste heat required for CO2 desorption can be generated in a particularly efficient and cost-effective way. The resulting CO2 separation costs range between 41 and 42 EUR/t CO2, depending on waste heat utilization for desorption. These costs are below the values of 50–65 EUR/t CO2 for comparable industrial applications. Despite these promising economic results, there are still some technical restrictions in terms of solvent degradation due to the high oxygen content in flue gas compositions. The results of this study point towards parametric studies for approaching these issues, such as the use of secondary and tertiary amines as solvents, or the optimization of operating conditions such as stripper pressure for further cost reductions potential. KW - economic evaluation KW - CO2-separation KW - glass industry KW - oxyfuel KW - methanation KW - power-to-gas Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-53627 N1 - Corresponding author: Sebastian Gärtner VL - 16 IS - 5 SP - 1 EP - 25 PB - MDPI CY - Basel ER - TY - JOUR A1 - Freni, Angelo A1 - Frazzica, Andrea A1 - Dawoud, Belal A1 - Chmielewski, Stefanie A1 - Calabrese, Luigi A1 - Bonaccorsi, Lucio Maria T1 - Adsorbent coatings for heat pumping applications: Verification of hydrothermal and mechanical stabilities JF - Applied Thermal Engineering N2 - This paper presents novel experimental methods for verification of both hydrothermal and mechanical stabilities of adsorbent coatings. Experiments have been carried out on zeolite-based coatings over aluminum substrates, prepared by a dip-coating technique developed at CNR-ITAE. Hydrothermal aging of several adsorbent coatings is ongoing. Adsorption and structural stability of some samples under test was successfully verified after 35000 aging cycles by isobars measurement and XRD analysis. Mechanical properties of coatings have been evaluated by applying different typologies of static and dynamic mechanical stresses. Results obtained have been compared with those achieved by subjecting adsorbent coatings prepared by Mitsubishi Plastic Incorporation (MPI) to the same characterization protocol. The comparison between the two types of coating returned that MPI coatings posses similar thermal stability and better mechanical strength than CNR-ITAE coatings. KW - Adsorbent coating KW - Adsorption heat pump KW - Hydrothermal stability KW - Mechanical stability Y1 - 2013 U6 - https://doi.org/10.1016/j.applthermaleng.2011.07.010 VL - 50 IS - 2 SP - 1658 EP - 1663 PB - Elsevier ER - TY - JOUR A1 - Dawoud, Belal T1 - Water vapor adsorption kinetics on small and full scale zeolite coated adsorbers; A comparison JF - Applied thermal engineering N2 - A possibility to enhance both heat and mass transfer characteristics of an adsorber heat exchanger is to apply the adsorbent directly to its surface in form of a consolidated layer. As the majority of the available publications on the effect of both coating technology and adsorbent layer thickness on the adsorption kinetics deals with small scale adsorbent samples, the results obtained can only represent the best case design of an adsorber heat exchanger. This article presents, therefore, a comparison between the adsorption kinetics of water vapour on small as well as two different full scale coated adsorber heat exchanger types with AQSOA-Z02 layers of Mitsubishi Plastics Incorporation under quasi isobaric conditions of adsorption heat pumps. The small scale coated samples have a zeolite dry mass of 200 mg and layer thicknesses of 200, 300 and 500 μm while the full scale adsorbers have a coated zeolite mass between 1.5 and 2.5 kg and layer thicknesses of 150, 200, 300, 400 and 500 μm. In the investigated adsorption heat pump module, up to 52.7 and 57.3% of the equilibrium differential water loading measured with the small scale coated substrates have been obtained after an adsorption-evaporation times of 300 and 600 s, respectively. KW - Adsorbent coating KW - Adsorption heat pump KW - Adsorption kinetics KW - AQSOA-Z02 Y1 - 2013 U6 - https://doi.org/10.1016/j.applthermaleng.2011.07.013 VL - 50 IS - 2 SP - 1645 EP - 1651 PB - Elsevier ER - TY - RPRT A1 - Sterner, Michael A1 - Bauer, Franz A1 - Hofrichter, Andreas A1 - Heberl, Michael T1 - Systemanalyse und -integration Power-to-X im Kontext von erneuerbarer Elektrizität als Primärenergie (SPIKE) N2 - Durch das in Paris beschlossene Ziel, die globale mittlere Temperatur auf deutlich unter 2 Grad Celsius gegenüber dem vorindustriellen Niveau zu begrenzen, ist ein Ausstieg aus der Nutzung fossiler Energieträger und Rohstoffe bis zum Jahr 2050 notwendig (WBGU 2016). Daher hat sich die Bundesregierung das Ziel gesetzt, bis zur Mitte des Jahrhunderts eine weitgehende Treibhausgasneutralität zu erreichen. Hierzu ist neben einer Steigerung der Energieeffizienz in allen Sektoren ein Ausbau erneuerbaren Energien notwendig. Dies beinhaltet hauptsächlich den Zubau von Wind‐ und Solarstromanlagen. Somit gewinnt die Sektorkopplung immer mehr an Bedeutung und wird in Zukunft eine tragende Rolle für die Defossilisierung des Energiesystems spielen (BMUB 2016). Als zentrales Element der Sektorkopplung gilt Strom, der über Power‐to‐X (PtX) sowohl energetisch im Wärme‐, und Verkehrssektor als auch stofflich in der Industrie und vor allem im Chemiesektor eingesetzt werden kann (Ausfelder et al. 2018a). Im Rahmen des P2X‐Vorhabens der Kopernikus Forschungsinitiative wird die Sektorkopplung durch die Umwandlung von Strom mittels elektrochemischer Prozesse in stoffliche Ressourcen wie Wasserstoff, Synthesegas oder Kohlenstoffmonoxid untersucht. Der Schwerpunkt liegt auf der Betrachtung der Kopplung von Strom und Verkehr sowie Strom und Chemie und der Untersuchung von Prozessen und Pfaden, die aus ökologischer, ökonomischer und gesellschaftlicher Sicht vorteilhaft sind. Eine vergleichende Einordnung in den Gesamtkontext der Energiewende mit Abwägung zahlreicher Alternativen und Konkurrenztechnologien ist dort allerdings nicht vorgesehen. Zudem werden einige relevante PtX‐Technologien wie Power‐to‐Heat nicht betrachtet. Aus diesem Grund wurden in SPIKE ergänzende PtX‐Technologiepfade aus systemanalytischer Sicht untersucht. Dies sind Power‐to‐Heat (PtH) und Power‐to‐Gas (PtG) über Elektrolyse und optionaler anschließender Methanisierung sowie die Herstellung ausgewählter Pfade der strombasierten Herstellung von Produkten der energieintensiven Industrie. Ziel des Forschungsvorhabens war die Analyse von PtX‐Technologien und Pfaden, deren vergleichende Einordnung im Gesamtkontext der Energiewende sowie die Unterstützung des P2X Roadmapping Prozesses und die Ableitung von Handlungsempfehlungen. Ein besonderer Schwerpunkt lag auf dem Einsatz von PtX im Industriesektor. Für das Vorhaben wurden Arbeitspakete (AP) erstellt, die Untersuchungen zu Technologie, Potenzial, Ökonomie und Ökologie von PtH (AP 1), PtG (AP 2), Power‐to‐Ammoniak, Power‐to‐Ethen und Power‐to‐Propen (AP 3) umfassten. Daraus wurde in AP 4 ein Systemvergleich mit Einordnung von PtX in die Energiewende durchgeführt. Auf dieser Basis und der Identifizierung regulatorischer Rahmenbedingungen für PtX (AP 5) wurde das deutsche Energiesystem samt PtX‐Pfaden in einem Energiesystemmodell abgebildet (AP 6). Die Ergebnisse flossen in das Roadmapping ein (AP 7). Zudem erfolgte ein Austausch mit den Projektpartnern und das Verfassen wissenschaftlicher Abhandlungen (AP 8). KW - Energieintensive Industrie KW - Energiesystemmodellierung KW - Power-to-Gas KW - Power-to-Heat KW - Ökobilanzierung Y1 - 2019 ER - TY - RPRT A1 - Thema, Martin A1 - Kaul, Anja A1 - Sterner, Michael A1 - Heberl, Michael T1 - Optimierung eines Rieselbett-Bioreaktors für die dynamische mikrobielle Biosynthese von Methan mit Archaeen-Mikroorganismen in Power-to-Gas-Anlagen N2 - Das übergeordnete Ziel des Vorhabens war die Entwicklung neuer technologischer Möglichkeiten für den biologischen Methanisierungsprozess mit Archaeen1 in Power-to-Gas-Anwendungen. Im Gegensatz zur technisch ausgereiften chemisch-katalytischen Methanisierung sind hier noch Potenziale zur Optimierung verfahrenstechnischer und biologischer Prozesse für das Speicherkonzept Power-to-Gas [7] vorhanden. Dabei sollte zum einen ein Rieselbett-Bioreaktor optimiert, simuliert und für die Hochskalierung vorbereitet werden. Zum anderen sollte eine Kombination optimal geeigneter Mikroorganismen und Packungsmaterialien selektiert und deren Verhalten und Eignung im Reaktor analysiert werden. Das Verhalten des entwickelten Systems sollte zunächst im Labor- und Technikumsmaßstab und anschließend im Feldtest an einer bestehenden Power-to-Gas-Anlage untersucht werden. Hauptziel während des Feldtests war die Produktion von einspeisefähigem Methan sowie dessen Einspeisung ins Gasnetz. Ein Hauptziel des Projektes war es, die Normung und Standardisierung notwendiger Systemparameter und Semantik zur Beschreibung und Einbindung biologischer Methanisierungseinheiten in Power-to-Gas-Anlagen voranzutreiben. Dies sollte zum einen die Vergleichbarkeit der wissenschaftlichen Erkenntnisse verbessern und zum anderen unterstützend bei der Kommerzialisierung der Technologie wirken. Aus dem Projekt heraus wurde so die neue Normungsreihe VDI 4635 Power-to-X beim Verein Deutscher Ingenieure angestoßen. KW - Biologische Methanisierung KW - Power-to-Gas KW - Erneuerbare Energien KW - Rieselbett-Bioreaktor KW - Archaeen Y1 - 2021 U6 - https://doi.org/10.2314/KXP:1815321555 ER - TY - CHAP A1 - Klitsman, Maksym A1 - Brückl, Oliver A1 - Eller, Johannes ED - Schulz, Detlef T1 - Analysis and simulation of the population driving behaviour and charging processes at different charging station types with electric vehicles T2 - NEIS 2021, Conference on Sustainable Energy Supply and Energy Storage Systems: 13-14. September 2021, Hamburg N2 - Electric vehicles are one of the important components of the energy transition, which is necessary for the CO2 emission reduction. In order to estimate the influence of electromobility on electric grids at present day and in the future, the generation of realistic charge profiles is necessary. The main objective of this study is the development of an algorithm, which generates realistic charge time series of electric vehicles. The very huge and detailed input surveys enable to define different population groups, representing specific driving behaviour. These groups are then composed and scaled up, according to the statistical population structure of a chosen town or city in Germany, and show typical driving behaviour of all inhabitants. The charge profiles are calculated for several charge station types, based on daily electric vehicle user mobility, day type and household type. In addition, charge process occurrence is evaluated through a model, involving charge infrastructure presence, attractiveness of corresponding charge station type and charge process necessity. Y1 - 2021 SN - 978-3-8007-5651-3 SP - 254 EP - 260 PB - VDE-Verlag ER - TY - JOUR A1 - Saveliev, Dmitry V. A1 - Fetisov, Leonid Y. A1 - Chashin, Dmitri V. A1 - Shabin, P. A. A1 - Vyunik, D. A. A1 - Fedulov, Feodor A1 - Kettl, W. A1 - Shamonin (Chamonine), Mikhail T1 - Method of Measuring Deformations of Magnetoactive Elastomers under the Action of Magnetic Fields JF - Russian Technological Journal Y1 - 2019 U6 - https://doi.org/10.32362/2500-316x-2019-7-4-81-91 VL - 7 IS - 4 SP - 81 EP - 91 ER - TY - JOUR A1 - Gamisch, Bernd A1 - Huber, Lea A1 - Gaderer, Matthias A1 - Dawoud, Belal T1 - On the Kinetic Mechanisms of the Reduction and Oxidation Reactions of Iron Oxide/Iron Pellets for a Hydrogen Storage Process JF - Energies N2 - This work aims at investigating the kinetic mechanisms of the reduction/oxidation (redox) reactions of iron oxide/iron pellets under different operating conditions. The reaction principle is the basis of a thermochemical hydrogen storage system. To simulate the charging phase, a single pellet consisting of iron oxide (90% Fe2O3, 10% stabilising cement) is reduced with different hydrogen (H2) concentrations at temperatures between 600 and 800 °C. The discharge phase is initiated by the oxidation of the previously reduced pellet by water vapour (H2O) at different concentrations in the same temperature range. In both reactions, nitrogen (N2) is used as a carrier gas. The redox reactions have been experimentally measured in a thermogravimetric analyser (TGA) at a flow rate of 250 mL/min. An extensive literature review has been conducted on the existing reactions’ kinetic mechanisms along with their applicability to describe the obtained results. It turned out that the measured kinetic results can be excellently described with the so-called shrinking core model. Using the geometrical contracting sphere reaction mechanism model, the concentration- and temperature-dependent reduction and oxidation rates can be reproduced with a maximum deviation of less than 5%. In contrast to the reduction process, the temperature has a smaller effect on the oxidation reaction kinetics, which is attributed to 71% less activation energy (Ea,Re=56.9 kJ/mol versus Ea,Ox=16.0 kJ/mol). The concentration of the reacting gas showed, however, an opposite trend: namely, to have an almost twofold impact on the oxidation reaction rate constant compared to the reduction rate constant. Y1 - 2022 U6 - https://doi.org/10.3390/en15218322 N1 - Corresponding author: Belal Dawoud VL - 15 IS - 21 PB - MDPI ER - TY - CHAP A1 - Gärtner, Sebastian A1 - Rank, Daniel A1 - Heberl, Michael A1 - Gaderer, Matthias A1 - Sterner, Michael T1 - Integration of Power-To-Methane into Glass Melting Processes T2 - Proceedings of the International Renewable Energy Storage Conference (IRES 2022) N2 - The glass industry is facing increased challenges regarding climate protection targets and rising energy costs. The integration of renewable energy including conversion and storage is a key for both challenges in this energy-intensive industrial sector, which has been mainly relying on fossil gas so far. The options considered to this point for reducing CO2 emissions and switching to a renewable energy supply involve far-reaching changes of the established melting processes. This entails significant risks in terms of influences on glass quality and stable production volumes. The presented approach for the integration of a Power-to-Methane (PtM) system into the glass industry is a completely new concept and has not been considered in detail before. It allows the use of established oxyfuel melting processes, the integration of fluctuating renewable energy sources and a simultaneous reduction of CO2 emissions by more than 78%. At the same time, natural gas purchases become obsolete. A techno-economic evaluation of the complete PtM process shows, that 1,76 €/m3 or 1,26 €/kg synthetic natural gas are possible with renewable energy supply. Using electricity from the energy grid would require electricity prices < 0,126 €/kWh to allow cost competitive PtM processes in the glass industry. Such electricity prices could be achieved by electricity market-based optimization and operation of the PtM system. This operation strategy would require AI-based algorithms predicting availabilities and prices on future-based markets. KW - Power-to-Gas KW - Methanation KW - Glass Melting KW - Glass Industry KW - Decarbonisation Y1 - 2023 U6 - https://doi.org/10.2991/978-94-6463-156-2_12 SN - 2589-4943 VL - 16 SP - 147 EP - 161 PB - Atlantis Press ER - TY - JOUR A1 - Kral, Christian A1 - Haumer, Anton A1 - Grabner, Christian T1 - Consistent Induction Motor Parameters for the Calculation of Partial Load Efficiencies by Means of an Advanced Simulation Model JF - Engineering Letters N2 - From the rating plate data of an induction motor the nominal efficiency can be determined. Without detailed knowledge of equivalent circuit parameters, partial load behavior cannot be computed. Therefore, a combined calculation and estimation scheme is presented, where the consistent parameters of an equivalent circuit are elaborated, exactly matching the nominal operating point. From these parameters part load efficiencies can be determined. KW - Induction motor KW - consistent parameters KW - partial load efficiency Y1 - 2010 SN - 1816-0948 SN - 1816-093X VL - 18 IS - 1 CY - Hong Kong ER - TY - JOUR A1 - Klenk, Eva Marianne A1 - Galka, Stefan T1 - Analysis of real-time tour building and scheduling strategies for in-plant milk-run systems with volatile transportation demand JF - IFAC - PapersOnLine N2 - In modern manufacturing systems, milk run (MR) systems represent route-based, cyclic material-handling systems that are used widely and enable frequent deliveries of containerized parts in small lot sizes from a central storage area to multiple points of use on the factory floor. Usually, deliveries take place at predetermined, constant time intervals. As in real-world MR systems, the number of containers to deliver in each interval varies in the short term, peaks in the number of deliveries may lead to capacity bottlenecks and late deliveries. In this paper, we develop three alternative strategies to determine starting times of MR cycles in real-time based on the current number of delivery orders in the system aiming to better handle variations in the number of orders. We evaluate the three strategies for different system load scenarios with respect to delivery service levels, order lead times, systems utilization and necessary number of MR trains using a discrete-event simulation model. KW - Control algorithms KW - Logistics KW - Material handling KW - Milk-run systems KW - Production systems KW - Real-time decision making KW - Transportation control Y1 - 2019 U6 - https://doi.org/10.1016/j.ifacol.2019.11.517 VL - 52 IS - 13 SP - 2110 EP - 2115 PB - Elsevier ER - TY - GEN A1 - Pershina, K. V. A1 - Saveliev, Dmitry V. A1 - Glavan, Gašper A1 - Chashin, Dmitri V. A1 - Belyaeva, Inna A. A1 - Fetisov, Leonid Y. A1 - Shamonin (Chamonine), Mikhail T1 - The voltage response of a structure comprising a magnetoactive-elastomer cylinder and a piezoelectric material to magnetic field step excitations T2 - The 4th International Baltic Conference on Magnetism (IBCM 2021) : Svetlogorsk, Russia August 29 - September 2, 2021 : Book of Abstracts Y1 - 2021 UR - http://smba.science/wp-content/uploads/2021/10/IBCM-2021-Book-of-Abstracts-5.pdf SP - 182 PB - Immanuel Kant Baltic Federal University, Kaliningrad, Russia ER - TY - RPRT A1 - Rank, Daniel A1 - Heberl, Michael A1 - Sterner, Michael T1 - Die CO2-Bilanz der OTH [Ostbayerischen Technische Hochschule Regenburg] BT - Tool für Hochschulen und Firmen Y1 - 2020 UR - https://sae58cb7e2208a3d2.jimcontent.com/download/version/1613400473/module/9240277976/name/1. Sitzung AG_Präsentation Prof. Sterner-1.pdf ER - TY - GEN A1 - Sterner, Michael A1 - Heberl, Michael T1 - The ORBIT-Project: Biological methanation in a trickle-bed reactor - key results and next steps T2 - 5th Nuremberg Workshop on Methanation and 2nd Generation, Nürnberg Friedrich-Alexander-Universität, 28.05.2021 KW - biologische Methanisierung KW - Archaeen KW - Power-to-Gas KW - Erneuerbare Energien KW - Rieselbett Bioreaktor Y1 - 2021 ER - TY - GEN A1 - Altmann, Robert A1 - Gebhard, Jürgen T1 - Phänomenologische Untersuchung des Einspritzprozesses eines Injektors aus dem Off-Highway-Segment mit Diesel- und Rapsölkraftstoff T2 - 16. Internationaler Fachkongress "Kraftstoffe der Zukunft 2019", Berlin Y1 - 2019 ER - TY - CHAP A1 - Grabner, Christian A1 - Gragger, Johannes V. A1 - Kapeller, Hansjörg A1 - Haumer, Anton A1 - Kral, Christian ED - Ao, Sio-Iong ED - Gelman, Len T1 - Sensorless PM-Drive Aspects T2 - Electronic Engineering and Computing Technology N2 - The development procedure of permanent magnet drives for sensor less operation beginning from standstill under overload conditions has to consider different design aspects coevally. First, the robust rotor position sensing by test signal enforces a design with a strongly different behavior of the spatial dq-oriented differential inductance values. Therefore, the interior rotor magnet array arrangement is from principle predestinated for the controlled sensor less mode including standstill. Fortunately, in order to reduce costs, the distinct reluctance torque capability of such interior magnet arrangement is additionally used for a significantly increased torque by applying a pre-oriented stator current space vectors within the quasi-steady control. KW - inductance modeling KW - machine design KW - nonlinear saturation effects KW - Sensorless vector control Y1 - 2010 SN - 978-90-481-8775-1 SN - 978-90-481-8776-8 U6 - https://doi.org/10.1007/978-90-481-8776-8_3 SP - 25 EP - 35 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Gamisch, Bernd A1 - Ettengruber, Stefan A1 - Gaderer, Matthias A1 - Dawoud, Belal T1 - Dynamic simulation of isothermal and non-isothermal reduction and oxidation reactions of iron oxide for a hydrogen storage process JF - Renewable and Sustainable Energy N2 - This work aims first to develop a dynamic lumped model for the isothermal reactions of hydrogen/steam with a single iron oxide/iron pellet inside a tubular reactor and to validate the model results against the experimental reaction kinetic data with the help of our STA device. To describe the temporal change in mass, and consequently, the temporal heat of reaction, the shrinking core model, based on the geometrical contracting sphere, is applied. It turned out that, the simulation model can reproduce the experimental, temporal concentration and temperature-dependent conversion rates with a maximum deviation of 4.6% during the oxidation reactions and 3.1% during the reduction reactions. In addition, a measured isothermal storage process comprising one reduction and one oxidation phase with a holding phase in between on a single reacting pellet could be reproduced with a maximum absolute deviation in the conversion rate of 1.5%. Moreover, a lumped, non-isothermal simulation model for a pelletized tubular redox-reactor including 2kg of iron oxide pellets has been established, in which the heat of reaction, heat transfer to the ambient and heat transfer between the solid and gas phases are considered. The temporal courses of the outlet gas concentration as well as the temperatures of the gas stream and the solid material at a constant input gas flow rate and a constant reacting gas inlet concentration but different input gas temperatures are estimated. Because of the endothermic nature of the reduction reaction, the inlet reacting gas temperature shall be kept high to prevent the severe temperature drop in the solid phase and, consequently, the significant reduction of the reaction rate. Contrary to that, the oxidation process requires lower input gas temperatures to avoid the excessive overheating of the reaction mass and, consequently, the sintering of the reacting pellets. Finally, five of the previous reactors have been connected in series to explore the influence of the changing inlet gas temperatures and concentrations on the dynamic performance of each storage mass. KW - hydrogen storage KW - iron/iron oxide KW - redox reactions KW - lumped model KW - isothermal reactions KW - non-isothermal reactions KW - kinetics of reactions KW - Aspen Custom Modeler Y1 - 2023 U6 - https://doi.org/10.55092/rse20230004 N1 - Corresponding author: Belal Dawoud VL - 1 IS - 1 PB - ELSP, International Open Science Platform ER - TY - JOUR A1 - Walter, Stefanie A1 - Schwanzer, Peter A1 - Hagen, Gunter A1 - Rabl, Hans-Peter A1 - Dietrich, Markus A1 - Moos, Ralf T1 - Soot Monitoring of Gasoline Particulate Filters Using a Radio-Frequency-Based Sensor JF - Sensors N2 - Owing to increasingly stringent emission limits, particulate filters have become mandatory for gasoline-engine vehicles. Monitoring their soot loading is necessary for error-free operation. The state-of-the-art differential pressure sensors suffer from inaccuracies due to small amounts of stored soot combined with exhaust gas conditions that lead to partial regeneration. As an alternative approach, radio-frequency-based (RF) sensors can accurately measure the soot loading, even under these conditions, by detecting soot through its dielectric properties. However, they face a different challenge as their sensitivity may depend on the engine operation conditions during soot formation. In this article, this influence is evaluated in more detail. Various soot samples were generated on an engine test bench. Their dielectric properties were measured using the microwave cavity perturbation (MCP) method and compared with the corresponding sensitivity of the RF sensor determined on a lab test bench. Both showed similar behavior. The values for the soot samples themselves, however, differed significantly from each other. A way to correct for this cross-sensitivity was found in the influence of exhaust gas humidity on the RF sensor, which can be correlated with the engine load. By evaluating this influence during significant humidity changes, such as fuel cuts, it could be used to correct the influence of the engineon the RF sensor. KW - dielectric properties KW - engine test bench KW - gasoline particulate filter (GPF) KW - microwave cavity perturbation KW - radio-frequency (RF) KW - soot mass determination Y1 - 2023 U6 - https://doi.org/10.3390/s23187861 SN - 1424-8220 N1 - This research work was funded by the Bavarian Research Foundation (Bayerische Forschungsstiftung, BFS) as part of the project “Load Sensor for GPF” (AZ-1288-17). VL - 23 IS - 18 SP - 1 EP - 19 PB - MDPI ER - TY - JOUR A1 - Rill, Georg A1 - Schuderer, Matthias T1 - A Second-Order Dynamic Friction Model Compared to Commercial Stick–Slip Models JF - Modelling N2 - Friction has long been an important issue in multibody dynamics. Static friction models apply appropriate regularization techniques to convert the stick inequality and the non-smooth stick–slip transition of Coulomb’s approach into a continuous and smooth function of the sliding velocity. However, a regularized friction force is not able to maintain long-term stick. That is why dynamic friction models were developed in recent decades. The friction force depends herein not only on the sliding velocity but also on internal states. The probably best-known representative, the LuGre friction model, is based on a fictitious bristle but realizes a too-simple approximation. The recently published second-order dynamic friction model describes the dynamics of a fictitious bristle more accurately. It is based on a regularized friction force characteristic, which is continuous and smooth but can maintain long-term stick due to an appropriate shift in the regularization. Its performance is compared here to stick–slip friction models, developed and launched not long ago by commercial multibody software packages. The results obtained by a virtual friction test-bench and by a more practical festoon cable system are very promising. Thus, the second-order dynamic friction model may serve not only as an alternative to the LuGre model but also to commercial stick–slip models. KW - commercial stick–slip friction models KW - dynamic friction model KW - long-term stick KW - multibody dynamics Y1 - 2023 U6 - https://doi.org/10.3390/modelling4030021 SN - 2673-3951 N1 - Corresponding author: Georg Rill VL - 4 IS - 3 SP - 366 EP - 381 PB - MDPI ER - TY - JOUR A1 - Rill, Georg A1 - Bauer, Florian A1 - Kirchbeck, Mathias T1 - VTT - a virtual test truck for modern simulation tasks JF - Vehicle system dynamics N2 - The development of new technologies like advanced driver assistance systems or automated driving requires a flexible simulation environment of sufficient complexity. In general this flexibility is not provided by commercial software packages. This paper presents a three-dimensional and nonlinear hand-made model for heavy commercial vehicles including tractor and trailer as well as tractor and semitrailer combinations that can be used in different simulation environments, as well as in real-time applications. As typical for trucks, the torsional flexibility of the frame and a suspended driver's cabin are taken into account. The design kinematics makes it possible to handle different and quite complex axle suspensions very efficiently. Appropriate force elements are used to model various couplings between tractor and trailer or tractor and semitrailer, respectively. The virtual test truck environment (VTT) coded in ANSI C is extremely portable and can easily be embedded in commercial simulation packages like MATLAB/Simulink. It includes the TMeasy tyre model and offers flexible interfaces to third-party software tools. KW - coupled air springs KW - design Kinematics KW - heavy commercial vehicles KW - MATLAB KW - Simulink KW - TMeasy tyre model KW - vehicle coupling KW - Vehicle modelling Y1 - 2021 U6 - https://doi.org/10.1080/00423114.2019.1705356 VL - 59 IS - 4 SP - 635 EP - 656 PB - Taylor&Francis ER - TY - CHAP A1 - Arrieta Castro, Abel A1 - Rill, Georg ED - Orlova, Anna ED - Cole, David T1 - Kinematic Versus Elasto-Kinematic Model of a Twistbeam Suspension T2 - Advances in Dynamics of Vehicles on Roads and Tracks II, proceedings of the 27th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2021): August 17-19, 2021, Saint Petersburg, Russia N2 - The Twistbeam axle suspension is a cheap and robust layout for rear axles at front wheel driven midsize cars. Appropriate models have to take the elastic deformation of the torsion beam into account. A Finite Element approach requires detailed informations of the material properties and the shape which are usually only available in the final production stage. This paper presents a lumped mass model which can easily be integrated into a multibody vehicle model and can be used in the early stage of development. An approximation by the design kinematics further reduces the complexity of the model and considers only the kinematic properties of the Twistbeam suspension. Simulations using a nonlinear and three-dimensional vehicle model with different maneuvers, such as steady-state cornering, step steer input, and driving straight ahead on random road, demonstrate the performance and, in particular, the difference of the presented Twistbeam suspension models. KW - Design kinematics KW - Twistbeam suspension KW - Multibody model KW - Vehicle dynamics Y1 - 2022 U6 - https://doi.org/10.1007/978-3-031-07305-2_59 SP - 505 EP - 605 PB - Springer Nature ER - TY - JOUR A1 - Rill, Georg A1 - Bauer, Florian A1 - Topcagic, Edin T1 - Performance of leaf spring suspended axles in model approaches of different complexities JF - Vehicle System Dynamics N2 - Axles with leaf spring suspension systems are still a popular choice in many commercial vehicles. However, leaf springs are not in perfect conformity to standard multibody vehicle models because they combine guidance and suspension in one single element. Combining standard multibody vehicle models with sophisticated finite element leaf spring models results in rather complex and computing time-consuming solutions. Purely kinematic models, defined by lookup tables or the design kinematics approach, cover only some but not all features of the leaf spring suspension. As shown here, the five-link model, which incorporates a quasi-static solution of the leaf spring compliance, provides a very practical model. It is comparatively lean and provides results of sufficient accuracy in the whole application range. KW - beam-model KW - commercial vehicles KW - design kinematics KW - five-Link model KW - Leaf spring suspension KW - vehicle dynamics Y1 - 2021 U6 - https://doi.org/10.1080/00423114.2021.1928249 VL - 60 IS - 8 SP - 2871 EP - 2889 PB - Taylor&Francis ER - TY - CHAP A1 - Bünte, Tilman A1 - Rill, Georg A1 - Ruggaber, Julian A1 - Tobolář, Jakub ED - Orlova, Anna ED - Cole, David T1 - Modelling and Validation of the TMeasy Tyre Model for Extreme Parking Manoeuvres T2 - Advances in Dynamics of Vehicles on Roads and Tracks II, Proceedings of the 27th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2021): August 17-19, 2021, Saint Petersburg, Russia N2 - The TMeasy is a tyre model suitable for vehicle handling analyses and enables easy parametrisation. Recently, a convenient interface to Modelica was implemented by DLR to support the TMeasy also for vehicle modelling in multi-physical domains. This paper focuses especially on the particular problem of reliable reproduction of the tyre’s bore torque which occurs during parking manoeuvres. It outlines the theory behind it, discusses the Modelica interface implementation, and presents the results of parameter identification which were achieved based on real experiments with DLR’s research platform ROboMObil. Y1 - 2022 SN - 978-3-031-07305-2 SN - 978-3-031-07304-5 U6 - https://doi.org/10.1007/978-3-031-07305-2_94 SP - 1015 EP - 1025 PB - Springer CY - Cham ER - TY - CHAP A1 - Rill, Georg T1 - A Three-Dimensional and Nonlinear Virtual Test Car T2 - ENOC 2022, book of abstracts, 10th European Nonlinear Dynamics Conference: July 17-22, 2022, Lyon, France N2 - Virtual testing procedures have become a standard in vehicle dynamics. The increasing complexity of driver assistance sys- tems demand for more and more virtual tests, which are supposed to produce reliable results even in the limit range. As a consequence, simplified vehicle models, like the classical bicycle model or 4-wheel vehicle models, have to be replaced by a fully three-dimensional and nonlinear vehicle model, which also encompasses the details of the suspension systems. This paper presents a passenger car model, where the chassis, the four knuckles, and the four wheels are described by rigid bodies, the suspension system is modeled by the generic design kinematics, and the TMeasy tire model provides the tire forces and torques in all driving situations. Y1 - 2022 UR - https://enoc2020.sciencesconf.org/data/ENOC2022_proceedings.pdf SP - 49 EP - 58 CY - Lyon ER - TY - CHAP A1 - Rill, Daniel A1 - Butz, Christiane A1 - Rill, Georg ED - Kecskeméthy, Andrés ED - Geu Flores, Francisco T1 - Dynamic Interaction of Heavy Duty Vehicles and Expansion Joints T2 - Multibody Dynamics 2019, Proceedings of the 9th ECCOMAS Thematic Conference on Multibody Dynamics N2 - The “Smart Bridge (Intelligente Brücke)” project cluster, initiated by the German Federal Highway Research Institute (Bundesanstalt für Straßenwesen, BASt) and the Federal Ministry of Transport and Digital Infrastructure (BMVI), focuses on “smart” monitoring devices that allow an efficient and economic maintenance management of bridge infrastructures. Among the participating projects, the one presented herein focuses on the development of a smart expansion joint, to assess the traffic parameters on site. This is achieved by measuring velocity and weight of crossing vehicles. In reference measurements, performed with a three-axle truck and a typical tractor semi-trailer combination with five axles in total, it was shown that the interaction between the vehicle and the expansion joint is highly dynamic and depends on several factors. To get more insight into this dynamic problem, a virtual test rig was set up. Although nearly all vehicle parameters had to be estimated, the simulation results conform very well with the measurements and are robust to vehicle parameter variations. In addition, they indicate a significant influence of the expansion joint dynamic to the peak values of the measured wheel loads, in particular on higher driving velocities. By compensating the relevant dynamic effects in the measurements, a “smart” data processing algorithm makes it possible to determine the actual vehicle weights in random traffic with reliability and appropriate accuracy. Y1 - 2020 SN - 978-3-030-23131-6 U6 - https://doi.org/10.1007/978-3-030-23132-3_56 VL - 53 SP - 471 EP - 478 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Rill, Georg A1 - Arrieta Castro, Abel ED - Klomp, Matthijs ED - Bruzelius, Fredrik ED - Nielsen, Jens ED - Hillemyr, Angela T1 - A Novel Approach for Parametrization of Suspension Kinematics T2 - Advances in Dynamics of Vehicles on Roads and Tracks: Proceedings of the 26th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2019), August 12-16, 2019, Gothenburg, Sweden N2 - n the automotive industry, simulations are needed to analyse the dynamics of vehicles and also of its main components and subsystems, e.g. tires, brakes and suspension systems. These simulations are required for an early-stage development and in consequence, they must deliver realistic results. Suspension systems plays a key role in comfort and safety of road vehicles. They usually consist of rigid links and force elements that are arranged with a specific topology. In addition, some of their functionalities are to carry the weight of the car and the passengers, and maintain a correct wheel alignment. In simulations involving suspension systems, lookup-tables are frequently used. They are obtained from a Kinematic and Compliance (KnC) test and then standardized for a specific vehicle simulation software. Nonetheless, lookup-tables require a reasonable number of characteristic points. Additionally, derivatives, interpolation, and extrapolation are not necessarily smooth. This produces results that depend on the interpolation technique and may be inaccurate. In this paper, a novel method called “design kinematics” is proposed. This method can describe the kinematic properties of almost any type of suspension systems. Comparisons with an analytic calculation and a KnC measurement shown that the design kinematics is able to represent the kinematic and compliance properties of suspension systems extremely well and very efficiently. KW - design Kinematics KW - Kinematic and compliance test KW - Suspension systems Y1 - 2020 SN - 978-3-030-38076-2 U6 - https://doi.org/10.1007/978-3-030-38077-9_210 SP - 1848 EP - 1857 PB - Springer International Publishing CY - Cham ER - TY - JOUR A1 - Rill, Georg T1 - Sophisticated but quite simple contact calculation for handling tire models JF - Multibody system dynamics N2 - Handling tire models like Pacejka (Tire and Vehicle Dynamics, 3rd edn., Elsevier, Amsterdam, 2012) or TMeasy (Rill in Proc. of the XV Int. Symp. on Dynamic Problems of Mechanics, Buzios, RJ, Brazil, 2013) consider the contact patch as one coherent plane. As a consequence, the irregularities of a rough road profile must be approximated by an appropriate local road plane that serves as an effective road plane in order to calculate the geometric contact point and the corresponding contact velocities. The Pacejka/SWIFT tire model employs a road enveloping model that generates the effective height and slope by elliptical cams. TMeasy just uses four representative road points for that purpose. In addition, TMeasy replaces the geometric contact point by the static contact point and shifts it finally to the dynamic contact point that represents the point where the contact forces are applied. In doing so, a rather sophisticated but still simple contact calculation is possible. Simulations obtained with a virtual tire test rig and fully nonlinear three-dimensional multibody system models of a motor-scooter and a passenger car demonstrate the potential of this contact approach. KW - Dynamic contact point KW - Effective road plane KW - Geometric contact point KW - Static contact point KW - Tire road contact KW - TMeasy tire model KW - Vehicle modeling Y1 - 2019 U6 - https://doi.org/10.1007/s11044-018-9629-4 VL - 45 IS - 2 SP - 131 EP - 153 PB - Springer Nature ER - TY - CHAP A1 - Rill, Georg A1 - Arrieta Castro, Abel ED - Kecskeméthy, Andrés ED - Geu Flores, Francisco ED - Carrera, Eliodoro ED - Elias, Dante A. T1 - The Influence of Axle Kinematics on Vehicle Dynamics T2 - Interdisciplinary Applications of Kinematics. Proceedings of the Third International Conference (IAK) N2 - The automotive industry employs many different kinds of axle suspension systems at modern passenger cars. Important criteria are costs, space requirements, kinematic properties, and compliance attributes. This paper illustrates that in particular the kinematic properties of a suspension system have a significant influence on the dynamics of vehicles. As a consequence, the kinematics of a suspension system must be modeled very precisely and nonlinear. Typical kinematical features of a suspension system are discussed by analyzing the most common double wishbone axle suspension system. The influence of the axle kinematics on vehicle dynamics is finally demonstrated by simulation results generated with a fully nonlinear and three-dimensional multibody vehicle model. KW - Double wishbone suspension system KW - Multibody system KW - Suspension kinematics KW - vehicle dynamics Y1 - 2019 SN - 978-3-030-16422-5 U6 - https://doi.org/10.1007/978-3-030-16423-2_2 VL - 71 SP - 23 EP - 31 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Rill, Georg T1 - TMeasy 6.0-A handling tire model that incorporates the first two belt eigenmodes T2 - Proceedings of the XI International Conference on Structural Dynamics (EURODYN 2020): Athens, Greece, 23.11.2020 - 26.11.2020 N2 - TMeasy 6.0, an extension to the standard TMeasy tire model of version 5.3, takes the relevant first two rigid body eigenmodes of the belt into consideration. These modes represent the in plane longitudinal and rotational movements of the belt relative to the rim. The dynamics of the longitudinal force is of higher order then and reproduces the tire wheel vibrations, required for indirect tire-pressure monitoring systems (iTPMS), sufficiently well. A tailored implicit solver, which takes the stiff coupling between the longitudinal force and the belt motions into account, still provides real-time performance in addition. Simulation examples show that a rigid body vehicle model equipped with TMeasy 6.0 makes it possible to investigate second generation indirect tire-pressure monitoring systems. KW - TMeasy Tire Model KW - Tire Force Dynamics KW - Frequency Analysis KW - Real-time Simulation KW - Virtual Test Rig Y1 - 2020 U6 - https://doi.org/10.47964/1120.9054.18673 SP - 676 EP - 689 PB - EASD Procedia ER - TY - BOOK A1 - Rill, Georg A1 - Arrieta Castro, Abel T1 - Road Vehicle Dynamics N2 - Road Vehicle Dynamics: Fundamentals and Modeling with MATLAB®, Second Edition combines coverage of vehicle dynamics concepts with MATLAB v9.4 programming routines and results, along with examples and numerous chapter exercises. Improved and updated, the revised text offers new coverage of active safety systems, rear wheel steering, race car suspension systems, airsprings, four-wheel drive, mechatronics, and other topics. Based on the lead author's extensive lectures, classes, and research activities, this unique text provides readers with insights into the computer-based modeling of automobiles and other ground vehicles. Instructor resources, including problem solutions, are available from the publisher. KW - Fahrdynamik Y1 - 2020 SN - 9780429244476 U6 - https://doi.org/10.1201/9780429244476 PB - CRC Press CY - Boca Raton, Fla. ER - TY - CHAP A1 - Rill, Georg ED - Lugner, Peter T1 - Multibody Systems and Simulation Techniques T2 - Vehicle Dynamics of Modern Passenger Cars N2 - This part begins with an introduction to Multibody Systems (MBS). It presents the elements of MBS and discusses different modeling aspects. Then, different methods to generate the equations of motion are presented. Solvers for ordinary differential equations (ODE) as well as differential algebraic equations (DAE) are discussed. Finally, techniques for “online” and “offline” simulations including real-time applications are presented like necessary for car development. Special examples show the connection between simulation and test results. KW - Differential equations KW - Equations of motion KW - Multibody systems KW - Numerical solution KW - Vehicle models Y1 - 2019 SN - 978-3-319-79007-7 U6 - https://doi.org/10.1007/978-3-319-79008-4_6 SP - 309 EP - 375 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Arrieta Castro, Abel A1 - Rill, Georg A1 - Weber, Hans I. ED - Carvalho, João Carlos Mendes ED - Martins, Daniel ED - Simoni, Roberto ED - Simas, Henrique T1 - Development of a Robust Integrated Control System to Improve the Stability of Road Vehicles T2 - Multibody Mechatronic Systems N2 - Nowadays, new technologies are pushing the road vehicle limits further. Promising applications, e.g., self-driving cars, require a suitable control system that can maintain the vehicle’s stability in critical scenarios. In most of current cars, the control systems actuates independently, meaning there is not a coordination or data sharing between them. This approach can produce a conflict between these standalone controllers and thus, no improvements on the vehicle’s stability are achieved or even a worse scenario can be generated. In order to overcome these problems, an integrated approach is developed in this work. This integration, defined in this work as Integrated Control (IC), is done by an intelligence coordination of all standalone controllers inside the vehicle, i.e., Anti-Lock Braking System (ABS), Electronic Stability Program (ESP) and Four-Wheel Steering System (4WS). The ABS model was built using Fuzzy logic, for which only three rules were necessary to get a good performance. To design the ESP and the 4WS, the simple handling vehicle model was used as a reference behavior. The IC was designed using the hierarchical approach with two layers, i.e., the upper and lower layer. The upper one, observes the side slip angle and depends of its value the upper layer triggers the ESP or the 4WS. Finally, in order to prove the improvements of the IC system over the non-integrated approach, a full-size vehicle model was used to perform simulation in run-off-road and μ-split scenarios. KW - 4WS KW - ABS KW - ESP KW - Integrated control KW - Run-off-Road scenarios Y1 - 2018 SN - 978-3-319-67566-4 U6 - https://doi.org/10.1007/978-3-319-67567-1_48 VL - 54 SP - 506 EP - 516 PB - Springer CY - Cham ER -