TY - CHAP A1 - Rauch, Johannes A1 - Brückl, Oliver T1 - Entwicklung eines Regelverfahrens für einen optimierten und zentralen Blindleistungsabruf zur Beeinflussung des Blindleistungshaushaltes von Mittelspannungsverteilungsnetzen unter Einhaltung von Netzrestriktionen T2 - Zukünftige Stromnetze, 30.-31.Jan.2019, Berlin Y1 - 2019 SP - 421 EP - 437 PB - Conexio CY - Pforzheim ER - TY - GEN A1 - Sterner, Michael T1 - Insight into Power-to-Gas/Liquids: a solution for sustainable transport besides e-mobility T2 - Conference Low Carbon Transport - Engineering the Fuels of the Future (Institution of Mechanical Engineers), London 09.07.2019 KW - Erneuerbare Energien KW - Klimaneutralität KW - Energiewende KW - Sektorenkopplung KW - Power-to-Gas Y1 - 2019 PB - Institution of Mechanical Engineers CY - London ER - TY - CHAP A1 - Kraus, Hermann A1 - Gschoßmann, David A1 - Brückl, Oliver T1 - Automatisierung von Netzplanungsprozessen in der Verteilnetzebene – Q(U)- und cosj(P)-Blindleistungsregelung dezentraler Anlagen als spannungshaltende Netzausbaumaßnahmen T2 - Tagungsband Zukünftige Stromnetze 2019, 30.-31.Jan.2019, Berlin N2 - Diese Arbeit befasst sich mit automatisierten Netzplanungsprozessen und gibt einen kurzen Einblick in das Entscheidungsunterstützungssystem, welches im EU-Projekt CrossEnergy entwickelt wird. Detaillierter wird aber auf die Konzipierung und Umsetzung eines automatisierten Einsatzes der Blindleistungsregelung von dezentralen Erzeugungs­ analgen eingegangen, die als spannungshaltende Netzausbaumaßnahme zur Verfügung stehen. Die vorgestellten Methoden und Algorithmen fokussieren sich auf die Q(U)- und coscp(P)-Regelungsarten. Y1 - 2019 SP - 407 EP - 420 PB - Connexio CY - Pforzheim ER - TY - CHAP A1 - Sterner, Michael A1 - Eckert, Fabian A1 - Henning, Hans-Martin A1 - Trost, Tobias ED - Sterner, Michael ED - Stadler, Ingo T1 - Storage Demand in the Transport and Chemical Sector T2 - Handbook of Energy Storage N2 - In the transport sector, energy transition is still in its beginnings: shares of renewable fuels are at 5% and are, with the exception of a small percentage in electrical rail transport, almost entirely restricted to biofuel. The transport sector, i.e., road, air, shipping, and rail traffic, consumes around 30% of all final energy in Germany and its dependency of over 90% on petroleum is still very high. As a result, its shares in greenhouse gas emissions are at 20%. The necessary structural change in mobility, based on energy transition, is closely linked to the question of operating energy and of energy storage also. Aside from vehicles directly powered by wind or solar energy, mobility without storage is not possible: fuel tanks in cars, gas stations, and airplanes are omnipresent. The focus of the considerations on storage demand in the transport sector is on the question of how these storages can be used with renewable energies via bio and synthetic fuels, and on the question of how much storage is necessary for these new drive technologies, such as e-mobility. Before this, mobility needs today and in future need to be examined. In the chemical sector, the situation is very much alike: there is a great dependency on fossil resources, and decarbonization is inevitable to achieve ambitious climate goals. The structural change to convert and store renewable electricity as primary energy via power-to-X (PtX) represents a storage demand. First estimates will conclude this chapter. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_5 SP - 165 EP - 188 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Breuer, Christopher A1 - Drees, Tim A1 - Eckert, Fabian A1 - Maaz, Andreas A1 - Pape, Carsten A1 - Rotering, Niklas A1 - Thema, Martin ED - Sterner, Michael ED - Stadler, Ingo T1 - Storage Demand in Power Supply T2 - Handbook of Energy Storage N2 - Energy storage systems (in the past as well as today) are one significant part in the energy supply. The following three chapters describe how storage demand will develop in the future for the electricity, heat, and traffic sectors, as well as for non-energetic consumption of fossil resources (the chemical industry). Chapter 3, the core of this section on storage demand, makes clear how and why the electricity sector is the nucleus of the energy supply of all sectors and why it creates essential bridges between electricity, heat, and transport sectors, as well as with the chemical industry. If planned electricity network expansion takes place and flexibilities in generation and consumption are fully exploited, the demand for electricity storage, according to present estimates, will only reach a significant scale at 60–80% shares of renewable energy in the power supply. Network expansion has a great impact on the storage demand, as well as flexible power generation in power plants, combined heat and power (CHP), and flexible consumption via demand-side management (DSM). Four studies in the context of storage demand and the role of energy storage systems for flexibility are comprehensively addressed. The authors and the co-authors were themselves participants in these studies, which will be complemented by ongoing research. A meta-study summary of the main results is shown in Abschn. 3.7, and these results are compared with seven further studies. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_3 SP - 51 EP - 136 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael ED - Sterner, Michael ED - Stadler, Ingo T1 - Energy Storage Through the Ages T2 - Handbook of Energy Storage N2 - Human beings have relied on stored energy since time immemorial. The planet’s first mechanism for storing energy arose two billion years ago. Photosynthesis captures solar energy in chemical bonds; it is a process on which all life depends. With the discovery of fire around one-and-a-half million years ago, early man learned to access this stored energy by burning wood. Only since the Industrial Revolution have humans used fossil fuels, which are the results of biomass produced millions of years ago, then subjected to geological processes. Today, the long-term objective is to utilize sustainable biomass storage, replicate it by technical means, and to develop new storage technologies. This chapter is about the history of energy storage as it pertains to the carbon cycle. It begins with a natural energy storage system—photosynthesis—and examines its products biomass, peat, and fossil fuels before turning to storage technology in the era of renewable energies. It will also discuss how stored energy is used. This chapter focuses on natural biogenic and fossil energy storage. Other chapters are devoted to artificial storage technologies, including batteries, pumped-storage, and power-to-gas (PtG). Each begins with a short history of its respective technology. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_1 SP - 3 EP - 22 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Stadler, Ingo A1 - Eckert, Fabian A1 - Gerhardt, Norman A1 - von Olshausen, Christian A1 - Thema, Martin A1 - Trost, Tobias ED - Sterner, Michael ED - Stadler, Ingo T1 - Storage Integration for Coupling Different Energy Sectors T2 - Handbook of Energy Storage N2 - Electricity is becoming the primary source of energy, a trend that is particularly apparent through the coupling of the electricity sector with other energy sectors. In addition to the established links between the electricity and heating sectors using combined heat and power (CHP), which is supplemented by electric heat-pumps and power-to-heat (PtH), other new links are also emerging. These links are manifesting in the form of electro-mobility and electric fuels in the electricity and transport sectors; and in the electricity and gas sector they are appearing in the form of power-to-gas (PtG). The production of basic chemical materials such as methanol or polymers using electrical energy, water, and CO2 will also play a role in the future. However, the latter will not be dealt with explicitly here. Instead we will consider in detail other aspects of electricity as a primary energy source and its integration and application for energy storage. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_14 SP - 757 EP - 803 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Stadler, Ingo A1 - Eckert, Fabian A1 - Thema, Martin ED - Sterner, Michael ED - Stadler, Ingo T1 - Storage Integration in Individual Energy Sectors T2 - Handbook of Energy Storage N2 - How is energy storage integrated and currently implemented in the electricity supply, heating supply, and mobility sectors? This chapter provides both theoretical and practical answers to that question. The chapter focuses on the integration of renewable energy. Cross-sectoral energy storage systems that link the electricity, heating, and mobility sectors are discussed in Kap. 14. This chapter focuses on storage integration in the electricity sector. After considering stand-alone networks, the chapter uses practical examples to analyze the various storage applications in the European network. The chapter concludes with a discussion of storage integration in the heating and transportation sectors. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_13 SP - 675 EP - 755 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Bauer, Franz ED - Sterner, Michael ED - Stadler, Ingo T1 - Definition and Classification of Energy Storage Systems T2 - Handbook of Energy Storage N2 - Energy supply always requires energy storage—either as an intrinsic property or as additional system. It is an intrinsic property of solid, liquid, and gaseous fuels, although less so of water-borne heat, but not of electricity. So to meet variable demands and supplies, heat and electricity networks usually require additional storage systems. When they are added to an energy network, should they be viewed as ‘suppliers’ or as ‘consumers’? Who is responsible for covering the costs of storage systems? To categorize storage systems in the energy sector, they first need to be carefully defined. This chapter defines storage as well as storage systems, describes their use, and then classifies storage systems according to temporal, spatial, physical, energy-related, and economic criteria. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_2 SP - 23 EP - 47 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Thema, Johannes A1 - Thema, Martin T1 - Nachnutzungskonzept: Braunkohle-Tagebaue als Pumpspeicherkraftwerk? JF - Energiewirtschaftliche Tagesfragen - et : Zeitschrift für Energiewirtschaft, Recht, Technik und Umwelt N2 - Der Anteil fluktuierender erneuerbarer Energien im deutschen Strommix steigt. Um die Netzstabilität zu erhalten, Fluktuationen im Dargebot nach Wetterlage und saisonal auszugleichen sind absehbar ab ca. 2030 große Stromspeicherkapazitäten erforderlich. Wasser-Pumpspeicherwerke sind derzeit die einzige langjährig erprobte Technologie, die künftig in Braunkohletagebauen, welche im Zuge der Energiewende aufgegeben werden, errichtet werden könnten. Eine Überschlagsrechnung am Beispiel eines Pumpspeicherwerks in verschiedenen Tagebauen zeigt, dass diese mit bis zu 400 GWh ein signifikantes technisches Speicherpotenzial haben. KW - Braunkohle KW - Energiewende KW - erneuerbare Energie KW - Pumpspeicherwerk KW - Speicherkapazität KW - Tagebau Y1 - 2019 VL - 69 IS - 4 SP - 38 EP - 39 PB - ETV Energieverl. CY - Essen ER - TY - CHAP A1 - Sterner, Michael A1 - Bauer, Franz A1 - Hofrichter, Andreas ED - Ausfelder, Florian ED - Dura, Hanna Ewy T1 - Systemanalyse von Power-to-X-Pfaden - Ergebnisse des Satellitenprojektes "SPIKE" T2 - Optionen für ein nachhaltiges Energiesystem mit Power-to-X Technologien : Nachhaltigkeitseffekte - Potenziale Entwicklungsmöglichkeiten; 2. Roadmap des Kopernikus-Projektes "Power-to-X": Flexible Nutzung erneuerbarer Ressourcen (P2X) Y1 - 2019 UR - https://edocs.tib.eu/files/e01fn21/1770760199.pdf SN - 978-3-89746-218-2 SP - 145 EP - 153 PB - DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V CY - Frankfurt am Main ER - TY - CHAP A1 - Sterner, Michael A1 - Bauer, Franz A1 - Crotogino, Fritz A1 - Eckert, Fabian A1 - von Olshausen, Christian A1 - Teichmann, Daniel A1 - Thema, Martin ED - Sterner, Michael ED - Stadler, Ingo T1 - Chemical Energy Storage T2 - Handbook of Energy Storage N2 - Purely electrical energy storage technologies are very efficient, however they are also very expensive and have the smallest capacities. Electrochemical-energy storage reaches higher capacities at smaller costs, but at the expense of efficiency. This pattern continues in a similar way for chemical-energy storage. In terms of capacities, the limits of batteries (accumulators) are reached when low-loss long-term storage is of need. Chemical-energy storage and stocking fulfills these requirements completely. The storing itself may be subject to significant efficiency losses, but, from today’s point of view and in combination with the existing gas and fuel infrastructure, it is the only national option with regards to the long-term storage of renewable energies. Chemical-energy storage is the backbone of today’s conventional energy supply. Solid (wood and coal), liquid (mineral oil), and gaseous (natural gas) energy carriers are ‘energy storages’ themselves, and are stored using different technologies. In the course of energy transition, chemical-energy storage will be of significant importance, mainly as long-term storage for the power sector, but also in the form of combustibles and fuels for transport and heat. Not only are conventional storing technologies discussed within this chapter, but a detailed explanation is also given about the storage of renewable energies in the form of gaseous (power-to-gas, PtG) and liquid (power-to-liquid, PtL) energy carriers for electricity, heat, chemicals, and in the form of synthetic fuels. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_8 SP - 325 EP - 482 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Eckert, Fabian A1 - Gerhardt, Norman A1 - Henning, Hans-Martin A1 - Palzer, Andreas ED - Sterner, Michael ED - Stadler, Ingo T1 - Heating Supply Storage Requirements T2 - Handbook of Energy Storage N2 - Unlike the electricity sector, heating and cooling storage requirements have attracted little public attention. This is because these storage requirements have generally already been met, and will not change significantly in the future. In the electricity sector by contrast, there will be a significant shift from primary energy storage to electricity and final energy storage. Both sectors have remarkably high storage requirements. Almost all households have thermal buffers. The same is true of renewable energy heating systems such as pellet heating, geothermal, or solar-thermal systems. Some households with liquid gas or oil heating even have two storage units: a fuel tank and a thermal buffer. Exceptions include heating systems with upstream storage such as district heating or gas storage. In the future, integration of the electricity and heating sectors by combined heat and power (CHP) generation, heat pumps, power-to-heat (PtH), and power-to-gas (PtG) will facilitate the use of renewable energy, and lead to a paradigm shift. Relying on results from various studies, this chapter examines the development of heating supply in Germany and the resulting thermal storage requirements. The chapter’s later sections provide surplus and storage potential estimates. Cooling requirements are included as ‘process cooling’ under ‘process heat’, and as ‘air-conditioning’ over ‘room heating’. It is primarily integrated into electricity demand. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_4 SP - 137 EP - 163 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Stadler, Ingo A1 - Bauer, Franz A1 - Budt, Marcus A1 - Heindl, Eduard A1 - Wolf, Daniel ED - Sterner, Michael ED - Stadler, Ingo T1 - Mechanical Energy Storage T2 - Handbook of Energy Storage N2 - Chemical-energy storage systems use caverns, porous storage facilities, tanks, and storage rooms to store chemical energy sources. Caverns, caves, and reservoirs can also be used to store gaseous media such as air, liquid media such as water, and solid media such as rock. The principles of mechanical energy storage are based on classical Newtonian mechanics, or in other words on fundamental physics from the eighteenth and nineteenth centuries. As a result, these types of storage are typically divided into two categories; storage of kinetic and potential energy, or storage of ‘pressure energy’. In this chapter, storage media is categorized by its aggregate state, and described by its function and application: first compressed air energy storage and then conventional electricity storage—pumped-storage plants. The chapter continues with a discussion of innovative methods of storing potential energy using water as a medium. These include artificially constructed pumped storage, pumped storage in the open sea, dam storage on rivers, pumped storage on heaps in repurposed mining areas, underfloor or underground pumped storage, and surface mine storage. The chapter concludes with a description of classical and modern flywheel energy storage systems. This age-old technology is then compared with a new concept: mechanical stored energy exploiting both pumped storage and change in the potential energy of rocks or large boulders. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_9 SP - 483 EP - 561 PB - Springer Berlin Heidelberg CY - Berlin, Heidelberg ER - TY - CHAP A1 - Stadler, Ingo A1 - Eckert, Fabian ED - Sterner, Michael ED - Stadler, Ingo T1 - Load Management as an Energy Storage System T2 - Handbook of Energy Storage N2 - Chapters 6 to 9 focused on storage systems that store electric energy in a range of forms, and then release the energy again as electric energy. Chapter 10 discussed the use of thermal-energy storage (TES) systems for thermal management. This chapter examines management methods. These methods use processes that typically convert electric energy into another form of final energy that can also be stored. This form of energy is often thermal energy. But unlike with the systems discussed in previous chapters, here the energy stored is not converted back into electricity. Instead, the energy is used and stored in the same form. From the point of view of the energy supply system, these management methods perform exactly the same function as energy storage systems. This chapter discusses load-management in general, then potential uses of load-management, and finally, current trends. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_11 SP - 611 EP - 636 PB - Springer CY - Berlin, Heidelberg ER - TY - GEN ED - Sterner, Michael ED - Stadler, Ingo T1 - Handbook of Energy Storage BT - Demand, Technologies, Integration N2 - There are several approaches to classifying energy storage systems (see Chaps. 1 and 2). Storage systems are used in a large number of different technologies at various stages of development, and in a wide range of application areas (see Chaps. 3 to 5). This chapter compares the capabilities of the different storage systems using the following criteria:This comparison of storage systems also provides a convenient overview of the various storage systems and their capabilities. KW - Erneuerbare Energien KW - Power-to-Gas KW - Energiespeicher Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0 PB - Springer-Nature CY - Heidelberg, Berlin, New York ET - Translation of 2nd German edition Sterner, „Stadler Energiespeicher – Bedarf, Technologien, Integration“ ER - TY - GEN A1 - Thema, Martin A1 - Bellack, Annett A1 - Weidlich, Tobias A1 - Huber, Harald A1 - Karl, Jürgen A1 - Sterner, Michael T1 - Optimierung biologischer CO2-Methanisierung im Rieselbett-Reaktor BT - das ORBIT-Projekt T2 - 4. Regensburger Energiekongress, Regensburg 26.-27.02.2019 KW - biologische Methanisierung KW - Archaeen KW - Power-to-Gas KW - Erneuerbare Energien KW - Rieselbett-Bioreaktor Y1 - 2019 ER - TY - GEN A1 - Thema, Martin A1 - Bauer, Franz A1 - Sterner, Michael T1 - Power-to-Gas world status report T2 - International Renewable Energy Storage Conference, Düsseldorf 14.-16.03.2019 KW - Erneuerbare Energien, Klimaneutralität, Energiewende, Sektorenkopplung, Power-to-Gas KW - Power-to-Gas KW - Sektorenkopplung KW - Energiewende KW - Klimaneutralität Y1 - 2019 ER - TY - GEN A1 - Sterner, Michael T1 - Sektorenkopplung mit Solarstrom: Theorie und Praxis T2 - 17. Nationale Photovoltaik-Tagung, Kursaal Bern, Schweiz 26.03.2019 KW - Erneuerbare Energien KW - Klimaneutralität KW - Energiewende KW - Sektorenkopplung KW - Solarstrom KW - Photovoltaik Y1 - 2019 ER - TY - CHAP A1 - Thema, Martin A1 - Bellack, Annett A1 - Weidlich, Tobias A1 - Huber, Harald A1 - Karl, Jürgen A1 - Sterner, Michael ED - Held, Jörgen T1 - Optimizing biological CO2-methanation in a trickle-bed reactor BT - the ORBIT-Project T2 - 6th International Conference on Renewable Energy Gas Technology, 20-21 May 2019, Malmö, Sweden. Conference proceedings KW - Biologische Methanisierung KW - Power-to-Gas KW - Erneuerbare Energien KW - Rieselbett-Bioreaktor KW - Archaeen Y1 - 2019 SP - 93 EP - 94 PB - Renewable Energy Technology International AB CY - Lund, Sweden ER - TY - GEN A1 - Sterner, Michael A1 - Thema, Martin T1 - Technologies status and perspectives of Power-to-Gas in connection with seasonal underground storage T2 - European Workshop on Underground Energy Storage, Paris 07.11.2019 KW - Erneuerbare Energien KW - Klimaneutralität KW - Energiewende KW - Sektorenkopplung KW - Power-to-Gas Y1 - 2019 ER - TY - JOUR A1 - Kahl, Matthias A1 - Krause, Veronika A1 - Hackenberg, Rudolf A1 - Ul Haq, Anwar A1 - Horn, Anton A1 - Jacobsen, Hans-Arno A1 - Kriechbaumer, Thomas A1 - Petzenhauser, Michael A1 - Shamonin (Chamonine), Mikhail A1 - Udalzow, Anton T1 - Measurement system and dataset for in-depth analysis of appliance energy consumption in industrial environment JF - tm - Technisches Messen N2 - To support a rational and efficient use of electrical energy in residential and industrial environments, Non-Intrusive Load Monitoring (NILM) provides several techniques to identify state and power consumption profiles of connected appliances. Design requirements for such systems include a low hardware and installations costs for residential, reliability and high-availability for industrial purposes, while keeping invasive interventions into the electrical infrastructure to a minimum. This work introduces a reference hardware setup that allows an in depth analysis of electrical energy consumption in industrial environments. To identify appliances and their consumption profile, appropriate identification algorithms are developed by the NILM community. To enable an evaluation of these algorithms on industrial appliances, we introduce the Laboratory-measured IndustriaL Appliance Characteristics (LILAC) dataset: 1302 measurements from one, two, and three concurrently running appliances of 15 appliance types, measured with the introduced testbed. To allow in-depth appliance consumption analysis, measurements were carried out with a sampling rate of 50 kHz and 16-bit amplitude resolution for voltage and current signals. We show in experiments that signal signatures, contained in the measurement data, allows one to distinguish the single measured electrical appliances with a baseline machine learning approach of nearly 100% accuracy. KW - appliance monitoring KW - DAQ KW - NILM Y1 - 2019 U6 - https://doi.org/10.1515/teme-2018-0038 VL - 86 IS - 1 SP - 1 EP - 13 PB - De Gruyter ER - TY - CHAP A1 - Haslbeck, Matthias A1 - Rauch, Johannes A1 - Brückl, Oliver A1 - Bäsmann, Rainer A1 - Günther, Andreas A1 - Rietsche, Hansjörg A1 - Tempelmeier, Achim T1 - Blindleistungsmanagement in Mittelspannungsnetzen BT - Ergebnisse des Forschungsprojekts SyNErgie T2 - Zukünftige Stromnetze 2019, 30.-31.Jan.2019, Berlin N2 - Die Energiewende führt zu neuen Herausforderungen für Verteilungsnetzbetreiber hinsichtlich der Erbringung von Systemdienstleistungen, der Integrationsfähigkeit weiterer Erzeugungsanlagen und Lasten sowie bei der Gewährleistung einer hohen Versorgungssicherheit. Die Deckung der steigenden Blindleistungsbedarfe seitens der Netzbetriebsmittel, Verbraucher und Erzeuger gewinnt durch den Wegfall der Großkraftwerke für Netzbetreiber zunehmend an Bedeutung.Das abgeschlossene und vom BMWi geförderte Projekt SyNErgie (Laufzeit von 03/2015 bis 05/2018) beschäftigt sich mit der Entwicklung von Blindleistungsmanagementsystemen für Mittelspannungsnetze (MS-Netze). Ziel dabeiist es, das bisher ungenutzte, freie Blindleistungspotenzial betrieblicher Kompensationsanlagen und dezentraler Erzeugungsanlagen (allg.: Q-Quellen) zu nutzen, um die Blindleistungsänderungsfähigkeit 1 eines Verteilungsnetzes zu erhöhen. Diese Veröffentlichung stellt ausgewählte Einzelergebnisse und Erfahrungen des Projektes vor, welche u. a. über zahlreiche Messungen inMS-Netzen bei Firmen mit Anschlusspunkt in der MS-Ebene, Netzsimulationen und mathematische Modelle abgeleitet wurden. Y1 - 2019 UR - https://www.fenes.net/wp-content/uploads/2019/03/SyNErgie_Paper_2019_Kreuzer_Blindleistungsmanagement_MSNetze.pdf SP - 170 EP - 182 ER - TY - JOUR A1 - Thema, Martin A1 - Weidlich, Tobias A1 - Hörl, Manuel A1 - Bellack, Annett A1 - Mörs, Friedemann A1 - Hackl, Florian A1 - Kohlmayer, Matthias A1 - Gleich, Jasmin A1 - Stabenau, Carsten A1 - Trabold, Thomas A1 - Neubert, Michael A1 - Ortloff, Felix A1 - Brotsack, Raimund A1 - Schmack, Doris A1 - Huber, Harald A1 - Hafenbradl, Doris A1 - Karl, Jürgen A1 - Sterner, Michael T1 - Biological CO2-Methanation: An Approach to Standardization JF - Energies N2 - Power-to-Methane as one part of Power-to-Gas has been recognized globally as one of the key elements for the transition towards a sustainable energy system. While plants that produce methane catalytically have been in operation for a long time, biological methanation has just reached industrial pilot scale and near-term commercial application. The growing importance of the biological method is reflected by an increasing number of scientific articles describing novel approaches to improve this technology. However, these studies are difficult to compare because they lack a coherent nomenclature. In this article, we present a comprehensive set of parameters allowing the characterization and comparison of various biological methanation processes. To identify relevant parameters needed for a proper description of this technology, we summarized existing literature and defined system boundaries for Power-to-Methane process steps. On this basis, we derive system parameters providing information on the methanation system, its performance, the biology and cost aspects. As a result, three different standards are provided as a blueprint matrix for use in academia and industry applicable to both, biological and catalytic methanation. Hence, this review attempts to set the standards for a comprehensive description of biological and chemical methanation processes. KW - Biological methanation KW - bubble column reactor KW - CO2-methanation KW - CSTR KW - membrane reactor KW - methanation KW - Power-to-Gas KW - Power-to-Methane KW - standardization KW - Trickle-bed reactor Y1 - 2019 U6 - https://doi.org/10.3390/en12091670 N1 - Corresponding author: Martin Thema VL - 12 IS - 9 SP - 1 EP - 32 PB - MDPI ER - TY - CHAP A1 - Malz, Sebastian A1 - Steffens, Oliver A1 - Krenkel, Walter ED - Völker, Conrad ED - Kornadt, Oliver ED - Jentsch, Mark ED - Vogel, Albert T1 - Solaraktive Fassaden im Bestandsbau T2 - Bauphysiktage 2019 in Weimar - Bauphysik in Forschung und Praxis, 25. und 26. September 2019, Bauhaus-Universität Weimar N2 - Im Rahmen des Forschungsprojektes MAGGIE, das am Beispiel des historischen Quartiers Margaretenau in Regensburg innovative Lösungen für modernes und bezahlbares Wohnen erforscht, soll über eine solaraktive Fassade Sonnenwärme im Bestandsmauerwerk eingespeichert werden, um so den Energiebedarf des Gebäudes zu reduzieren. Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-20464 UR - https://www.researchgate.net/publication/341654708_Solaraktive_Fassaden_im_Bestandsbau SN - 978-3-00-063821-3 SP - 127 EP - 129 ER - TY - CHAP A1 - Kraus, Hermann A1 - Brückl, Oliver ED - Schulz, Detlef T1 - Concept for the Use of an Automated Network-Planning in the Distribution Grid Level with Coordination of Various Grid Expansion Measures T2 - NEIS 2019 : Conference on Sustainable Energy Supply and Energy Storage Systems, Hamburg 19.09.2019 - 20.09.2019 N2 - In this thesis, a concept for the automated use of network planning processes, which is part of the decision support system developed in the framework of the EU project CrossEnergy, is presented. This publication focuses on the automatic processing of input data and subsequent network modeling as well as the coordination of network extension measures for the systematic solution of static voltage and current problems. Different variants are calculated in order to be able to compare the design technologies. KW - Eingabedaten KW - Entscheidungsunterstützungssystem KW - Konstruktionstechnik KW - Netzausbau KW - Netzmodell KW - Spannung (elektrisch) Y1 - 2019 UR - http://www.vde-verlag.de/proceedings-de/565152022.html SN - 978-3-8007-5152-5 SP - 161 EP - 165 ER - TY - CHAP A1 - Lang, Christian A1 - Steinborn, Florian A1 - Steffens, Oliver A1 - Lang, Elmar Wolfgang T1 - Electricity Load Forecasting - An Evaluation of Simple 1D-CNN Network Structures T2 - International Conference on Time Series and Forecasting (ITISE 2019), Proceedings of Papers Vol. 2, 25-27 September 2019, Granada (Spain) N2 - This paper presents a convolutional neural network (CNN)which can be used for forecasting electricity load profiles 36 hours intothe future. In contrast to well established CNN architectures, the inputdata is one-dimensional. A parameter scanning of network parameters isconducted in order to gain information about the influence of the kernelsize, number of filters, and dense size. The results show that a goodforecast quality can already be achieved with basic CNN architectures.The method works not only for smooth sum loads of many hundredconsumers, but also for the load of apartment buildings KW - energy load forecasting KW - STLF KW - neural networks KW - CNN KW - con-volutional networks Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-16649 UR - https://arxiv.org/abs/1911.11536 UR - http://itise.ugr.es/ITISE2019_vol2.pdf SN - 978-84-17970-78-9 SP - 797 EP - 806 ER - TY - CHAP A1 - Briem, Ulrich ED - Dohm, Martin T1 - Fatigue Behaviour of Rope Wires T2 - Proceedings of the OIPEEC Conference, La Rochelle, France, 12th - 15th March 2019 N2 - The rope curve line of a tensioned rope can be described by means of the catenary curve. Opposed to that, the curved line of a free bent rope cannot be described by an analytical function. Practical applications of free bending are for example at tail ropes at the bottom of shaft in rope drives with traction sheaves. The question whether the maximum diameter of rope loop is small enough for the diameter of the shaft is highly interesting. In [1] a method was presented to calculate the curved line of free bent ropes numerically by help of energy methods. An analytical description of rope curve line would be very helpful. Beginning with the structure of a rope curve line of tensioned rope (catenary curve) and considering the influence of bending stiffness, the structure of an analytical equation for the curve line of a free bent rope will be developed. The main focus of this paper is to develop and to describe the structure of such an analytical equation. To get a first idea about the values of the constants in that analytical equation a few test results were evaluated. But these equations consider the static rope behavior only. Due to dynamic effects in the rope while running through the loop at the bottom of a shaft, pendulousness of the tail rope occurs. Y1 - 2019 UR - https://oipeec.org/products/mathematical-approach-to-curve-line-of-free-bent-ropes PB - OIPEEC ER - TY - CHAP A1 - Buschmann, Knut A1 - Briem, Ulrich ED - Dohm, Martin T1 - Ultra Deep Temperature Behaviour of Wire Rope and Rope Wires T2 - Proceedings of the OIPEEC Conference, La Rochelle, France, 12th - 15th March 2019 N2 - Mobile cranes are regularly operated in regions which experience ultra deep operating temperatures of down to -60?C (-76?F). In safety regulated work environments crane operations will be suspended simply because the lowest wire rope working temperature stated in the applicable standards is -40?C/F. Examples of ultra deep temperature wire rope application are shown in Figure 1.1 and 1.3. It should be noted that this paper is written in conjunction with a paper written by the co-author Ulrich Briem titled “Fatigue Behaviour of Rope Wires”, presented and published in unison with this one. In order to analyze the behaviour under ultra deep temperature conditions, tests on wire rope as well as on rope wires were carried out. In the following, static tensile and bending test results with rope and rope wires will be reported, which were carried out in conditions of down to -95?C (-139?F) as well as at room temperature. The conclusion is that the results of these tests can be adopted to crane wire rope as well. Y1 - 2019 UR - https://oipeec.org/products/ultra-deep-temperature-behaviour-of-wire-rope-and-rope-wires ER - TY - JOUR A1 - Keim, Vincent A1 - Marx, P. A1 - Nonn, Aida A1 - Münstermann, Sebastian T1 - Fluid-structure-interaction modeling of dynamic fracture propagation in pipelines transporting natural gases and CO2-mixtures JF - International Journal of Pressure Vessels and Piping N2 - As part of current design standards, the Battelle Two-Curve Model (BTCM) is still widely used to predict and secure ductile crack arrest in gas transmission pipelines. For modern linepipe steels and rich natural gases or CO2 mixtures, the BTCM might lead to incorrect predictions. On the one hand, it suffers from the insufficient description of the individual physical processes in the pipe material and fluid itself. Furthermore, the model does not account for fluid-structure-interaction (FSI) effects during simultaneous running-ductile fracture (RDF) and mixture decompression. Numerical FSI models allow for a more sophisticated, coupled analysis of the driving forces for the failure of pipelines. This paper deals with the development of an FSI model for the coupled prediction of 3D pressure profiles acting on the inner pipe wall during crack propagation. The coupled Euler-Lagrange (CEL) method is used to link the fluid and structure models. In a Lagrange formulation, the modified Bai-Wierzbicki (MBW) model describes the plastic deformation and ductile fracture as a function of the underlying stress/strain conditions. The fluid behavior is calculated in a 3D model space by Euler equations and the GERG-2008 reference equation of state (EOS). The coupled CEL model is used to predict the RDF in small-diameter pipe sections for different fluid mixtures. The calculated 3D pressure distributions ahead and behind the running crack tip (CT) significantly differ in axial and circumferential directions depending on the mixture composition. The predicted FSI between the pipe wall and fluid decompression in 3D CEL/FSI model provides reliable knowledge about the pressure loading of the pipeline during RDF. KW - Fluid-Struktur-Wechselwirkung KW - Rissausbreitung KW - Pipeline KW - Gas KW - Pipeline failure KW - Fluid-structure-interaction KW - CO2 decompression KW - Running ductile fracture Y1 - 2019 U6 - https://doi.org/10.1016/j.ijpvp.2019.103934 VL - 175 IS - August PB - Elsevier ER - TY - CHAP A1 - Carrillo Li, Enrique Roberto A1 - Schorr, Philipp A1 - Kaufhold, Tobias A1 - Rodríguez Hernández, Jorge Antonio A1 - Zentner, Lena A1 - Zimmermann, Klaus A1 - Böhm, Valter ED - Awrejcewicz, Jan ED - Kaźmierczak, Markek ED - Olejnik, Paweł T1 - Kinematic analysis of the rolling locomotion of mobile robots based on tensegrity structures with spatially curved compressed components T2 - Applicable Solutions in Non-Linear Dynamical Systems; 15th International Conference "Dynamical Systems - Theory and Applications" (DSTA 2019, 2-5 December, 2019, Lodz, Poland N2 - In this work, a tensegrity structure with spatially curved members is applied as rolling locomotion system. The actuation of the structure allows a variation of the originally cylindrical shape to a conical shape. Moreover, the structure is equipped with internal movable masses to control the position of the center of mass of the structure. To control the locomotion system a reliable actuation strategy is required. Therefore, the kinematics of the system considering the nonholonomic constraints are derived in this paper. Based on the resulting insight in the locomotion behavior a feasible actuation strategy is designed to control the trajectory of the system. To verify this approach kinematic analyses are evaluated numerically. The simulation data confirm the path following due to an appropriate shape change of the tensegrity structure. Thus, this system enables a two-dimensional rolling locomotion. The use of mechanically compliant tensegrity structures in mobile robots is an attractive research topic, due to the possibility to adjust their mechanical properties reversibly during locomotion. In this paper rolling locomotion of mobile robots based on simple tensegrity structures, consisting of three compressed spatially curved members connected to a continuous net of prestressed tensional members, is discussed. Planar locomotion of these robots is induced by the movement of internal masses. The movement direction can be changed by changing the robot's shape between a cylinder and a truncated cone. The paper focuses on the description of the kinematics of these systems with respect to the shape change. KW - Inverse kinematics KW - Nonholonomic mechanics KW - Tensegrity structure Y1 - 2019 UR - http://212.191.87.54:1616/k16/awrejcewicz/publikacje/T2.pdf SN - 978-83-66287-30-3 SP - 335 EP - 344 PB - Wydawnictwo Politechniki Łódzkiej CY - Łódź, Polen ER - TY - JOUR A1 - Keim, Vincent A1 - Nonn, Aida A1 - Münstermann, Sebastian T1 - Application of the modified Bai-Wierzbicki model for the prediction of ductile fracture in pipelines JF - International Journal of Pressure Vessels and Piping N2 - The complex mechanical and corrosive loads of modern pipeline systems transporting oil, natural gas and CO2 impose steadily increasing requirements on material properties. The majority of current design standards still limit the application of modern high toughness linepipe steels due to the simple specification of material requirements in terms of energy levels from Charpy impact or Battelle Drop-Weight-Tear (BDWT) tests. In consequence, research activities have been conducted recently aiming at developing modified or novel experimental methods for the characterization of the ductile fracture behavior. To quantify the effects of various parameters on fracture behavior and derive suitable correlations, it is necessary to accompany these activities by numerical simulations with appropriate ductile damage models. In this paper, the MBW model is applied to study the structural behavior of pipelines in ductile fracture regime. Due to its precise incorporation of the underlying load conditions, the damage model is successfully used to simulate the slant fracture behavior in Battelle Drop weight tear test specimens and pipe sections. In comparison to ductile damage models applied in former studies, namely the Gurson-Tvergaard-Needleman and Cohesive Zone model, the presented numerical methodology allows for a more detailed investigation of loading, material and geometry effects on fracture and crack arrest behavior of pipelines. KW - Running ductile fracture KW - Stress state conditions KW - MBW model KW - Pipeline failure KW - Slant fracture Y1 - 2019 U6 - https://doi.org/10.1016/j.ijpvp.2019.02.010 VL - 171 IS - March SP - 104 EP - 116 PB - Elsevier ER - TY - RPRT A1 - Sterner, Michael A1 - Bauer, Franz A1 - Hofrichter, Andreas A1 - Heberl, Michael T1 - Systemanalyse und -integration Power-to-X im Kontext von erneuerbarer Elektrizität als Primärenergie (SPIKE) N2 - Durch das in Paris beschlossene Ziel, die globale mittlere Temperatur auf deutlich unter 2 Grad Celsius gegenüber dem vorindustriellen Niveau zu begrenzen, ist ein Ausstieg aus der Nutzung fossiler Energieträger und Rohstoffe bis zum Jahr 2050 notwendig (WBGU 2016). Daher hat sich die Bundesregierung das Ziel gesetzt, bis zur Mitte des Jahrhunderts eine weitgehende Treibhausgasneutralität zu erreichen. Hierzu ist neben einer Steigerung der Energieeffizienz in allen Sektoren ein Ausbau erneuerbaren Energien notwendig. Dies beinhaltet hauptsächlich den Zubau von Wind‐ und Solarstromanlagen. Somit gewinnt die Sektorkopplung immer mehr an Bedeutung und wird in Zukunft eine tragende Rolle für die Defossilisierung des Energiesystems spielen (BMUB 2016). Als zentrales Element der Sektorkopplung gilt Strom, der über Power‐to‐X (PtX) sowohl energetisch im Wärme‐, und Verkehrssektor als auch stofflich in der Industrie und vor allem im Chemiesektor eingesetzt werden kann (Ausfelder et al. 2018a). Im Rahmen des P2X‐Vorhabens der Kopernikus Forschungsinitiative wird die Sektorkopplung durch die Umwandlung von Strom mittels elektrochemischer Prozesse in stoffliche Ressourcen wie Wasserstoff, Synthesegas oder Kohlenstoffmonoxid untersucht. Der Schwerpunkt liegt auf der Betrachtung der Kopplung von Strom und Verkehr sowie Strom und Chemie und der Untersuchung von Prozessen und Pfaden, die aus ökologischer, ökonomischer und gesellschaftlicher Sicht vorteilhaft sind. Eine vergleichende Einordnung in den Gesamtkontext der Energiewende mit Abwägung zahlreicher Alternativen und Konkurrenztechnologien ist dort allerdings nicht vorgesehen. Zudem werden einige relevante PtX‐Technologien wie Power‐to‐Heat nicht betrachtet. Aus diesem Grund wurden in SPIKE ergänzende PtX‐Technologiepfade aus systemanalytischer Sicht untersucht. Dies sind Power‐to‐Heat (PtH) und Power‐to‐Gas (PtG) über Elektrolyse und optionaler anschließender Methanisierung sowie die Herstellung ausgewählter Pfade der strombasierten Herstellung von Produkten der energieintensiven Industrie. Ziel des Forschungsvorhabens war die Analyse von PtX‐Technologien und Pfaden, deren vergleichende Einordnung im Gesamtkontext der Energiewende sowie die Unterstützung des P2X Roadmapping Prozesses und die Ableitung von Handlungsempfehlungen. Ein besonderer Schwerpunkt lag auf dem Einsatz von PtX im Industriesektor. Für das Vorhaben wurden Arbeitspakete (AP) erstellt, die Untersuchungen zu Technologie, Potenzial, Ökonomie und Ökologie von PtH (AP 1), PtG (AP 2), Power‐to‐Ammoniak, Power‐to‐Ethen und Power‐to‐Propen (AP 3) umfassten. Daraus wurde in AP 4 ein Systemvergleich mit Einordnung von PtX in die Energiewende durchgeführt. Auf dieser Basis und der Identifizierung regulatorischer Rahmenbedingungen für PtX (AP 5) wurde das deutsche Energiesystem samt PtX‐Pfaden in einem Energiesystemmodell abgebildet (AP 6). Die Ergebnisse flossen in das Roadmapping ein (AP 7). Zudem erfolgte ein Austausch mit den Projektpartnern und das Verfassen wissenschaftlicher Abhandlungen (AP 8). KW - Energieintensive Industrie KW - Energiesystemmodellierung KW - Power-to-Gas KW - Power-to-Heat KW - Ökobilanzierung Y1 - 2019 ER - TY - JOUR A1 - Saveliev, Dmitry V. A1 - Fetisov, Leonid Y. A1 - Chashin, Dmitri V. A1 - Shabin, P. A. A1 - Vyunik, D. A. A1 - Fedulov, Feodor A1 - Kettl, W. A1 - Shamonin (Chamonine), Mikhail T1 - Method of Measuring Deformations of Magnetoactive Elastomers under the Action of Magnetic Fields JF - Russian Technological Journal Y1 - 2019 U6 - https://doi.org/10.32362/2500-316x-2019-7-4-81-91 VL - 7 IS - 4 SP - 81 EP - 91 ER - TY - JOUR A1 - Klenk, Eva Marianne A1 - Galka, Stefan T1 - Analysis of real-time tour building and scheduling strategies for in-plant milk-run systems with volatile transportation demand JF - IFAC - PapersOnLine N2 - In modern manufacturing systems, milk run (MR) systems represent route-based, cyclic material-handling systems that are used widely and enable frequent deliveries of containerized parts in small lot sizes from a central storage area to multiple points of use on the factory floor. Usually, deliveries take place at predetermined, constant time intervals. As in real-world MR systems, the number of containers to deliver in each interval varies in the short term, peaks in the number of deliveries may lead to capacity bottlenecks and late deliveries. In this paper, we develop three alternative strategies to determine starting times of MR cycles in real-time based on the current number of delivery orders in the system aiming to better handle variations in the number of orders. We evaluate the three strategies for different system load scenarios with respect to delivery service levels, order lead times, systems utilization and necessary number of MR trains using a discrete-event simulation model. KW - Control algorithms KW - Logistics KW - Material handling KW - Milk-run systems KW - Production systems KW - Real-time decision making KW - Transportation control Y1 - 2019 U6 - https://doi.org/10.1016/j.ifacol.2019.11.517 VL - 52 IS - 13 SP - 2110 EP - 2115 PB - Elsevier ER - TY - GEN A1 - Altmann, Robert A1 - Gebhard, Jürgen T1 - Phänomenologische Untersuchung des Einspritzprozesses eines Injektors aus dem Off-Highway-Segment mit Diesel- und Rapsölkraftstoff T2 - 16. Internationaler Fachkongress "Kraftstoffe der Zukunft 2019", Berlin Y1 - 2019 ER - TY - JOUR A1 - Rill, Georg T1 - Sophisticated but quite simple contact calculation for handling tire models JF - Multibody system dynamics N2 - Handling tire models like Pacejka (Tire and Vehicle Dynamics, 3rd edn., Elsevier, Amsterdam, 2012) or TMeasy (Rill in Proc. of the XV Int. Symp. on Dynamic Problems of Mechanics, Buzios, RJ, Brazil, 2013) consider the contact patch as one coherent plane. As a consequence, the irregularities of a rough road profile must be approximated by an appropriate local road plane that serves as an effective road plane in order to calculate the geometric contact point and the corresponding contact velocities. The Pacejka/SWIFT tire model employs a road enveloping model that generates the effective height and slope by elliptical cams. TMeasy just uses four representative road points for that purpose. In addition, TMeasy replaces the geometric contact point by the static contact point and shifts it finally to the dynamic contact point that represents the point where the contact forces are applied. In doing so, a rather sophisticated but still simple contact calculation is possible. Simulations obtained with a virtual tire test rig and fully nonlinear three-dimensional multibody system models of a motor-scooter and a passenger car demonstrate the potential of this contact approach. KW - Dynamic contact point KW - Effective road plane KW - Geometric contact point KW - Static contact point KW - Tire road contact KW - TMeasy tire model KW - Vehicle modeling Y1 - 2019 U6 - https://doi.org/10.1007/s11044-018-9629-4 VL - 45 IS - 2 SP - 131 EP - 153 PB - Springer Nature ER - TY - CHAP A1 - Rill, Georg A1 - Arrieta Castro, Abel ED - Kecskeméthy, Andrés ED - Geu Flores, Francisco ED - Carrera, Eliodoro ED - Elias, Dante A. T1 - The Influence of Axle Kinematics on Vehicle Dynamics T2 - Interdisciplinary Applications of Kinematics. Proceedings of the Third International Conference (IAK) N2 - The automotive industry employs many different kinds of axle suspension systems at modern passenger cars. Important criteria are costs, space requirements, kinematic properties, and compliance attributes. This paper illustrates that in particular the kinematic properties of a suspension system have a significant influence on the dynamics of vehicles. As a consequence, the kinematics of a suspension system must be modeled very precisely and nonlinear. Typical kinematical features of a suspension system are discussed by analyzing the most common double wishbone axle suspension system. The influence of the axle kinematics on vehicle dynamics is finally demonstrated by simulation results generated with a fully nonlinear and three-dimensional multibody vehicle model. KW - Double wishbone suspension system KW - Multibody system KW - Suspension kinematics KW - vehicle dynamics Y1 - 2019 SN - 978-3-030-16422-5 U6 - https://doi.org/10.1007/978-3-030-16423-2_2 VL - 71 SP - 23 EP - 31 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Rill, Georg ED - Lugner, Peter T1 - Multibody Systems and Simulation Techniques T2 - Vehicle Dynamics of Modern Passenger Cars N2 - This part begins with an introduction to Multibody Systems (MBS). It presents the elements of MBS and discusses different modeling aspects. Then, different methods to generate the equations of motion are presented. Solvers for ordinary differential equations (ODE) as well as differential algebraic equations (DAE) are discussed. Finally, techniques for “online” and “offline” simulations including real-time applications are presented like necessary for car development. Special examples show the connection between simulation and test results. KW - Differential equations KW - Equations of motion KW - Multibody systems KW - Numerical solution KW - Vehicle models Y1 - 2019 SN - 978-3-319-79007-7 U6 - https://doi.org/10.1007/978-3-319-79008-4_6 SP - 309 EP - 375 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Arrieta Castro, Abel A1 - Chaves, Rafael B. A1 - Rill, Georg A1 - Weber, Hans I. ED - Fleury, Agenor de T. ED - Rade, Domingos A. ED - Kurka, R. G. T1 - Use of Integrated Control to Enhance the Safety of Vehicles in Run-Off-Road Scenarios T2 - Proceedings of DINAME 2017 : Selected Papers of the XVII International Symposium on Dynamic Problems of Mechanics N2 - In this work, an integrated vehicle control system (IC) is tested in run-off-road scenarios. The integrated approach was employed in order to coordinate vehicle control systems, i.e. the Anti-Lock Brake System (ABS), Four-wheel Steering (4WS) and the Electronic Stability Program (ESP). To perform a run-off-road maneuver, a fuzzy virtual test driver was designed. By receiving the lateral position of an obstacle and the vehicle’s relative yaw angle, the virtual test driver is capable of following a reference trajectory. Furthermore, to test the performance of the standalone controllers, i.e. ABS, ESP and 4WS, individual maneuvers are performed using a multibody vehicle model. The vehicle without any coordination between the control systems is used as reference. For the simulation results, it is concluded that the IC improves the vehicle stability and maneuverability in comparison with the non-integrated approach. Y1 - 2019 SN - 978-3-319-91217-2 SN - 978-3-319-91216-5 U6 - https://doi.org/10.1007/978-3-319-91217-2_30 SN - 2195-4356 SP - 431 EP - 443 PB - Springer CY - Cham ET - 1. Auflage ER - TY - JOUR A1 - Thema, Martin A1 - Bauer, Franz A1 - Sterner, Michael T1 - Power-to-Gas: Electrolysis and methanation status review JF - Renewable and Sustainable Energy Reviews N2 - This review gives a worldwide overview on Power-to-Gas projects producing hydrogen or renewable substitute natural gas focusing projects in central Europe. It deepens and completes the content of previous reviews by including hitherto unreviewed projects and by combining project names with details such as plant location. It is based on data from 153 completed, recent and planned projects since 1988 which were evaluated with regards to plant allocation, installed power development, plant size, shares and amounts of hydrogen or substitute natural gas producing examinations and product utilization phases. Cost development for electrolysis and carbon dioxide methanation was analyzed and a projection until 2030 is given with an outlook to 2050. The results show substantial cost reductions for electrolysis as well as for methanation during the recent years and a further price decline to less than 500 euro per kilowatt electric power input for both technologies until 2050 is estimated if cost projection follows the current trend. Most of the projects examined are located in Germany, Denmark, the United States of America and Canada. Following an exponential global trend to increase installed power, today's Power-to-Gas applications are operated at about 39 megawatt. Hydrogen and substitute natural gas were investigated on equal terms concerning the number of projects. KW - Biological CO2-Methanation KW - Chemical CO2-Methanation KW - Cost-development KW - Electrolysis KW - Power-to-Gas Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-26238 N1 - Corresponding author: Martin Thema VL - 112 IS - 7 SP - 775 EP - 787 PB - Elsevier ER - TY - CHAP A1 - De, Sangita A1 - Niklas, Michael A1 - Rooney, Brian A1 - Mottok, Jürgen A1 - Brada, Premek T1 - Towards Translation of Semantics of Automotive Interface Description Models from Franca to AUTOSAR Frameworks BT - An Approach using Semantic Synergies T2 - 2019 International Conference on Applied Electronics (AE), 10-11 Sept. 2019, Pilsen, Czech Republic N2 - The automotive industry is eventually evolving into a complex network of services. The heterogeneous and distributed nature of automotive software systems demands flexible software components which can operate in different environments. Because of heterogeneous automotive development environments, the domain experts, must cope with too many diversities, adaption layers, and incompatibilities to design applications for the current generation of autonomous driving vehicles. In this context, interface adaptation is a promising approach to achieve flexibility without directly changing the respective components. AUTOSAR, which is the de-facto standard for describing automotive system architecture and is a hugely comprehensive standard allowing designers full control from abstract system description to bare metal level deployment. However, the vehicle subsystems have still evolved to include multifarious high-level domains not covered by AUTOSAR e.g. Infotainment, Telematics etc. Therefore, it seems beneficial to bridge the semantic gaps between AUTOSAR applications and other standards of automotive application domains. The goal of this paper is to investigate interface semantic mapping and achieve transparent integration of domain-specific applications using the translation of semantics among the AUTOSAR platform software component models and other software components models of open source development platforms e.g. GENIVI. A key goal of such a modelling approach is the reuse of existing interface description languages and respective code generators. This will enhance future interoperability and decrease in incompatibility among these platforms. KW - Adaptation models KW - ARXML KW - Automotive engineering KW - component model KW - Connectors KW - FRAMEWORK KW - Franca IDL KW - interface KW - Receivers KW - semantic KW - synergy KW - traits Y1 - 2019 U6 - https://doi.org/10.23919/AE.2019.8867018 SP - 1 EP - 6 PB - University of West Bohemia ER - TY - CHAP A1 - De, Sangita A1 - Niklas, Michael A1 - Mottok, Jürgen A1 - Brada, Přemek T1 - A Semantic Analysis of Interface Description Models of Heterogeneous Vehicle Application Frameworks: An Approach Towards Synergy Exploration T2 - MODELSWARD 2019: Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development, 20.02.2019 - 22.02.2019, Prague, Czech Republic N2 - As the world is getting more connected, the demands of services in automotive industry are increasing with the requirements such as IoT (Internet of Things) in cars, automated driving, etc. Eventually, the automotive industry has evolved to a complex network of servi ces, where each organization depends on the other organizations, to satisfy its service requirements in different phases of the vehicle life cycle. Because of these heterogeneous and complex development environments, most of the vehicle component interface models need to be specified in various manifest ations to satisfy the semantic and syntactic requirements, specific to different application development environments or frameworks. This paperdescribes an approach to semantic analysis of components interfaces description models of heterogeneous frameworks, that are used for vehicle applications. The proposed approach intends to ensure that interface description models of different service-based vehicle frameworks can be compared, correlated and re-used based on semantic synergies, across different vehicle platforms, development environments and organizations. The approach to semantic synergy exploration could further provide the knowledge base for the increase in interoperability, overall efficiency and development of an automotive domain specific general software solutions, by facilitating coexistence of components of heterogeneous frameworks in the same high-performance ECU for future vehicle software. KW - Application: Framework KW - IDL KW - Semantic: Mapping Y1 - 2019 SN - 978-989-758-358-2 SP - 394 EP - 401 PB - SCITEPRESS ER - TY - JOUR T1 - Energieforschung BT - geförderte Projekte 2017 bis 2019 N2 - Über uns Das Regensburg Center of Energy and Resources (RCER) bündelt seit 2012 die Aktivitäten der Ostbayerischen Technischen Hochschule Regensburg (OTH Regensburg) und der regionalen Wirtschaftsunternehmen auf dem Strategiefeld „Energie und Ressourcen“. Mission: Energieforschung: vernetzen, voranbringen, vermitteln Das RCER fördert die Vernetzung verschiedener Disziplinen der Energieforschung innerhalb der OTH Regensburg und mit externen Partnern (Firmen, Förderträgern, Forschungsinstitutionen, öffentlichen Einrichtungen). Das RCER ist Ihr Partner beim Voranbringen von Kooperationen und Forschungsvorhaben durch Unterstützung in der Antragsphase, bei der Einwerbung von Projektmitteln und Projektbegleitung im Energiebereich. Das RCER steht für die Vermittlung von Know-how, Basiswissen, aktuellen Fragen und den Technologietransfer rund um das Thema Energie zwischen Wissenschaft, Wirtschaft, Gesellschaft und Politik. Vision Wir sind Ihr erster Ansprechpartner und Motor für innovative Energieforschung. Werte Verlässlichkeit, Kompetenz, Verantwortungsbewusstsein.Regional verwurzelt und weltoffen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-65439 PB - OTH Regensburg ET - Ausgabe 2020 ER - TY - CHAP A1 - Thomeczek, Ludwig A1 - Attenberger, Andreas A1 - Kolb, Johannes A1 - Matoušek, Václav A1 - Mottok, Jürgen ED - Unger, Herwig T1 - Betrachtungen zu Latenzquellen und deren Beobachtung in POSIX-Systemen am Beispiel von Container-Runtimes T2 - Echtzeit 2019 N2 - Die am weitesten verbreiteten autonomen Systeme der Zukunft sind aller Voraussicht nach intelligente Fahrzeuge, welche selbständig im Straßenverkehr navigieren und mit der Umgebung interagieren. Diese neuen Funktionen erfordern den Einsatz von performanten Mehrkernprozessoren sowie von komplexen (POSIX-kompatiblen) Betriebssystemen. Gleichzeitig erfordert der Einsatz im Automobil hohe funktionale Sicherheit (ASIL-Level), was unter anderem robuste Echtzeiteigenschaften der verwendeten Hard- und Software voraussetzt. Den Echtzeiteigenschaften steht die erhöhte Komplexität mit neuen Quellen für nichtdeterministische Latenzen gegenüber. In diesem Paper präsentieren wir eine Übersicht über diese neuen Einflussfaktoren, und vermessen anschließend Containerlaufzeitumgebungen und deren Latenzverhalten. Wir zeigen dabei, das Netzwerkbrücken unter Last erheblichen Einfluss (Faktor 4–5) auf die Netzwerklatenz ausüben können. Y1 - 2019 SN - 978-3-658-27807-6 U6 - https://doi.org/10.1007/978-3-658-27808-3_12 VL - 35 SP - 109 EP - 118 PB - Springer Fachmedien Wiesbaden CY - Wiesbaden ER - TY - CHAP A1 - Kraus, Hermann A1 - Brückl, Oliver T1 - Automated use of wired measures in grid planning for solving current and voltage band problems T2 - Power and Energy Student Summit (PESS) 2019, Magdeburg N2 - This work deals with the use of cable exchange and parallel cabling as network expansion measures in the context of an automated grid planning for the elimination of current and voltage band problems in a distribution network. Inter alia, reference is made to a higher-level program, which is being developed in the EU project "CrossEnergy", and the procedures for remedying the limit value violations are presented. KW - Netzplanung KW - Automatisierung KW - Netzverstärkung KW - Leitungsmaßnahme Y1 - 2019 SN - 978-3-944722-84-9 U6 - https://doi.org/10.24352/UB.OVGU-2019-086 VL - 77 SP - 207 EP - 211 PB - Otto-von-Guericke-Universität, Institut für Elektrische Energiesysteme CY - Magdeburg ER - TY - JOUR A1 - Keiner, Dominik A1 - Ram, Manish A1 - Barbosa, Larissa de Souza Noel Simas A1 - Bogdanov, Dmitrii A1 - Breyer, Christian T1 - Cost optimal self-consumption of PV prosumers with stationary batteries, heat pumps, thermal energy storage and electric vehicles across the world up to 2050 JF - Solar Energy N2 - Globally, PV prosumers account for a significant share of the total installed solar PV capacity, which is a growing trend with ever-increasing retail electricity prices. Further propelled by performance improvements of solar PV and innovations that allow for greater consumer choice, with additional benefits such as cost reductions and availability of incentives. PV prosumers may be one of the most important enablers of the energy transition. PV prosumers are set to gain the most by maximising self-consumption, while avoiding large amounts of excess electricity being fed into the grid. Additionally, electricity and heat storage technologies, heat pumps and battery electric vehicles are complementary to achieve the highest possible self-consumption shares for residential PV prosumer systems, which can reach grid-parity within this decade in most regions of the world. This research finds the cost optimal mix of the various complementary technologies such as batteries, electric vehicles, heat pumps and thermal heat storage for PV prosumers across the world by exploring 4 different scenarios. Furthermore, the research presents the threshold for economical maximum battery capacity per installed PV capacity, along with self-consumption ratios, demand cover ratios and heat cover ratios for 145 different regions across the world. This is a first of its kind study to conduct a global analysis of PV prosumers with a range of options to meet their complete energy demand from a future perspective, up to 2050. Maximising self-consumption from solar PV generation to meet all energy needs will be the most economical option in the future, for households across most regions of the world. KW - Battery KW - Electric vehicle KW - EMISSIONS KW - Heat pump KW - LIFE-CYCLE COST KW - Optimization KW - Photovoltaics KW - POWER-TO-HEAT KW - Prosumer KW - RESIDENTIAL HEAT KW - SYSTEMS KW - TECHNOLOGIES KW - Thermal energy storage KW - Vehicle-to-home Y1 - 2019 U6 - https://doi.org/10.1016/j.solener.2019.04.081 VL - 185 SP - 406 EP - 423 PB - Elsevier ER - TY - CHAP A1 - Rösel, Birgit A1 - Köhler, Thomas T1 - First results of a new digitalized concept for teaching control theory as minor subject at a university of applied science T2 - 2018 IEEE Global Engineering Education Conference (EDUCON), 17-20 April 2018, Santa Cruz de Tenerife, Spain N2 - This paper presents a digitalized concept for teaching control theory as minor subject with an integrated approach for lectures, exercises and practical sessions and first results of the implementation at the department of electrical engineering at the OTH Regensburg. The concept uses activating methods like blended learning and possibilities of digitalization of teaching implementing Just in Time Teaching and Peer Instruction. The base of the new concept is the idea of constructive alignment. Furthermore this paper presents the feedback of the students along with an accompanying scientific research over several semesters. The data obtained from the presented module are compared with the data from other blended learning approaches in Germany. KW - Blended Learning KW - constructive alignment KW - Control theory KW - Electrical engineering KW - Electronic learning KW - Just in Time Teaching KW - Task analysis KW - taxonomy KW - teaching text Y1 - 2018 U6 - https://doi.org/10.1109/EDUCON.2018.8363217 SP - 118 EP - 125 PB - IEEE ER - TY - JOUR A1 - Sýkora, Miroslav A1 - Holicky, Milan A1 - Jung, Karel A1 - Diamantidis, Dimitris T1 - Human safety criteria for risk-based structural design JF - International Journal of Safety and Security Engineering N2 - Risk and reliability criteria are well established in many industrial sectors such as the offshore, chemi- cal or nuclear industries. Comparative risk thresholds have been specified to allow a responsible organization or regulator to identify activities, which impose an acceptable level of risk concerning the participating individuals, or society as a whole. The scope of this contribution is to present target reliability criteria based on acceptable human safety levels. Application of theoretical principles is illustrated by examples of railway engineering structures. Initially it is shown how civil engineering structures for which human safety criteria play a role are classified according to Eurocodes. Examples include bridges, tunnels or station buildings. The general concepts for risk acceptance are then briefly reviewed, particularly in their relation to the target reliability criteria. The distinction between the two types of criteria is made: group risk and the acceptance criterion based on the Life Quality Index LQI approach introduced by ISO 2394:2015. The differences between the criteria for new and existing structures are discussed. The application is illustrated by an example of a bridge crossing an important railway line. It appears that while benefits and costs of a private stakeholder or public authority are reflected by economic optimisation, the society should define the limits for human safety to achieve uniform risks for various daily-life activities and across different industrial sectors. Keywords: group risk, human safety, individual risk, Life Quality Index, railway, risk acceptance, structure, target reliability KW - individual risk KW - group risk KW - human safety KW - Life Quality Index KW - railway KW - risk acceptance KW - structure KW - target reliability Y1 - 2018 U6 - https://doi.org/10.2495/SAFE-V8-N2-287-298 VL - 8 IS - 2 SP - 287 EP - 298 PB - WIT Press ER - TY - JOUR A1 - Diamantidis, Dimitris A1 - Sýkora, Miroslav A1 - Lenzi, Daniele T1 - Optimising Monitoring: Standards, Reliability Basis and Application to Assessment of Roof Snow Load Risks JF - Structural Engineering International N2 - This paper addresses the optimisation of monitoring and decision-making criteria regarding the future use of structures. The current state of practice in standards and reliability framework are initially summarised. A general methodology for obtaining cost-optimal decisions is then presented on the basis of limit state design, probabilistic reliability analysis and cost estimates. The implementation of the risk-based approach is illustrated in a case study dealing with the roof of a stadium located in northern Italy. As the roof fails to comply with the requirements of the Eurocodes, the installation of a permanent monitoring system is recommended to allow for a real-time reliability assessment. The results demonstrate the potential of monitoring systems and probabilistic reliability analysis for supporting decisions regarding safety measures such as snow removal or temporary closure of the stadium, as well as reflecting the need to implement the discussed procedures in future standards. Y1 - 2018 U6 - https://doi.org/10.1080/10168664.2018.1462131 VL - 28 IS - 3 SP - 269 EP - 279 PB - Taylor&Francis ER -