TY - CHAP A1 - Rauch, Johannes A1 - Brückl, Oliver T1 - Entwicklung eines Regelverfahrens für einen optimierten und zentralen Blindleistungsabruf zur Beeinflussung des Blindleistungshaushaltes von Mittelspannungsverteilungsnetzen unter Einhaltung von Netzrestriktionen T2 - Zukünftige Stromnetze, 30.-31.Jan.2019, Berlin Y1 - 2019 SP - 421 EP - 437 PB - Conexio CY - Pforzheim ER - TY - GEN A1 - Sterner, Michael T1 - Insight into Power-to-Gas/Liquids: a solution for sustainable transport besides e-mobility T2 - Conference Low Carbon Transport - Engineering the Fuels of the Future (Institution of Mechanical Engineers), London 09.07.2019 KW - Erneuerbare Energien KW - Klimaneutralität KW - Energiewende KW - Sektorenkopplung KW - Power-to-Gas Y1 - 2019 PB - Institution of Mechanical Engineers CY - London ER - TY - CHAP A1 - Kraus, Hermann A1 - Gschoßmann, David A1 - Brückl, Oliver T1 - Automatisierung von Netzplanungsprozessen in der Verteilnetzebene – Q(U)- und cosj(P)-Blindleistungsregelung dezentraler Anlagen als spannungshaltende Netzausbaumaßnahmen T2 - Tagungsband Zukünftige Stromnetze 2019, 30.-31.Jan.2019, Berlin N2 - Diese Arbeit befasst sich mit automatisierten Netzplanungsprozessen und gibt einen kurzen Einblick in das Entscheidungsunterstützungssystem, welches im EU-Projekt CrossEnergy entwickelt wird. Detaillierter wird aber auf die Konzipierung und Umsetzung eines automatisierten Einsatzes der Blindleistungsregelung von dezentralen Erzeugungs­ analgen eingegangen, die als spannungshaltende Netzausbaumaßnahme zur Verfügung stehen. Die vorgestellten Methoden und Algorithmen fokussieren sich auf die Q(U)- und coscp(P)-Regelungsarten. Y1 - 2019 SP - 407 EP - 420 PB - Connexio CY - Pforzheim ER - TY - CHAP A1 - Sterner, Michael A1 - Eckert, Fabian A1 - Henning, Hans-Martin A1 - Trost, Tobias ED - Sterner, Michael ED - Stadler, Ingo T1 - Storage Demand in the Transport and Chemical Sector T2 - Handbook of Energy Storage N2 - In the transport sector, energy transition is still in its beginnings: shares of renewable fuels are at 5% and are, with the exception of a small percentage in electrical rail transport, almost entirely restricted to biofuel. The transport sector, i.e., road, air, shipping, and rail traffic, consumes around 30% of all final energy in Germany and its dependency of over 90% on petroleum is still very high. As a result, its shares in greenhouse gas emissions are at 20%. The necessary structural change in mobility, based on energy transition, is closely linked to the question of operating energy and of energy storage also. Aside from vehicles directly powered by wind or solar energy, mobility without storage is not possible: fuel tanks in cars, gas stations, and airplanes are omnipresent. The focus of the considerations on storage demand in the transport sector is on the question of how these storages can be used with renewable energies via bio and synthetic fuels, and on the question of how much storage is necessary for these new drive technologies, such as e-mobility. Before this, mobility needs today and in future need to be examined. In the chemical sector, the situation is very much alike: there is a great dependency on fossil resources, and decarbonization is inevitable to achieve ambitious climate goals. The structural change to convert and store renewable electricity as primary energy via power-to-X (PtX) represents a storage demand. First estimates will conclude this chapter. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_5 SP - 165 EP - 188 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Breuer, Christopher A1 - Drees, Tim A1 - Eckert, Fabian A1 - Maaz, Andreas A1 - Pape, Carsten A1 - Rotering, Niklas A1 - Thema, Martin ED - Sterner, Michael ED - Stadler, Ingo T1 - Storage Demand in Power Supply T2 - Handbook of Energy Storage N2 - Energy storage systems (in the past as well as today) are one significant part in the energy supply. The following three chapters describe how storage demand will develop in the future for the electricity, heat, and traffic sectors, as well as for non-energetic consumption of fossil resources (the chemical industry). Chapter 3, the core of this section on storage demand, makes clear how and why the electricity sector is the nucleus of the energy supply of all sectors and why it creates essential bridges between electricity, heat, and transport sectors, as well as with the chemical industry. If planned electricity network expansion takes place and flexibilities in generation and consumption are fully exploited, the demand for electricity storage, according to present estimates, will only reach a significant scale at 60–80% shares of renewable energy in the power supply. Network expansion has a great impact on the storage demand, as well as flexible power generation in power plants, combined heat and power (CHP), and flexible consumption via demand-side management (DSM). Four studies in the context of storage demand and the role of energy storage systems for flexibility are comprehensively addressed. The authors and the co-authors were themselves participants in these studies, which will be complemented by ongoing research. A meta-study summary of the main results is shown in Abschn. 3.7, and these results are compared with seven further studies. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_3 SP - 51 EP - 136 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael ED - Sterner, Michael ED - Stadler, Ingo T1 - Energy Storage Through the Ages T2 - Handbook of Energy Storage N2 - Human beings have relied on stored energy since time immemorial. The planet’s first mechanism for storing energy arose two billion years ago. Photosynthesis captures solar energy in chemical bonds; it is a process on which all life depends. With the discovery of fire around one-and-a-half million years ago, early man learned to access this stored energy by burning wood. Only since the Industrial Revolution have humans used fossil fuels, which are the results of biomass produced millions of years ago, then subjected to geological processes. Today, the long-term objective is to utilize sustainable biomass storage, replicate it by technical means, and to develop new storage technologies. This chapter is about the history of energy storage as it pertains to the carbon cycle. It begins with a natural energy storage system—photosynthesis—and examines its products biomass, peat, and fossil fuels before turning to storage technology in the era of renewable energies. It will also discuss how stored energy is used. This chapter focuses on natural biogenic and fossil energy storage. Other chapters are devoted to artificial storage technologies, including batteries, pumped-storage, and power-to-gas (PtG). Each begins with a short history of its respective technology. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_1 SP - 3 EP - 22 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Stadler, Ingo A1 - Eckert, Fabian A1 - Gerhardt, Norman A1 - von Olshausen, Christian A1 - Thema, Martin A1 - Trost, Tobias ED - Sterner, Michael ED - Stadler, Ingo T1 - Storage Integration for Coupling Different Energy Sectors T2 - Handbook of Energy Storage N2 - Electricity is becoming the primary source of energy, a trend that is particularly apparent through the coupling of the electricity sector with other energy sectors. In addition to the established links between the electricity and heating sectors using combined heat and power (CHP), which is supplemented by electric heat-pumps and power-to-heat (PtH), other new links are also emerging. These links are manifesting in the form of electro-mobility and electric fuels in the electricity and transport sectors; and in the electricity and gas sector they are appearing in the form of power-to-gas (PtG). The production of basic chemical materials such as methanol or polymers using electrical energy, water, and CO2 will also play a role in the future. However, the latter will not be dealt with explicitly here. Instead we will consider in detail other aspects of electricity as a primary energy source and its integration and application for energy storage. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_14 SP - 757 EP - 803 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Stadler, Ingo A1 - Eckert, Fabian A1 - Thema, Martin ED - Sterner, Michael ED - Stadler, Ingo T1 - Storage Integration in Individual Energy Sectors T2 - Handbook of Energy Storage N2 - How is energy storage integrated and currently implemented in the electricity supply, heating supply, and mobility sectors? This chapter provides both theoretical and practical answers to that question. The chapter focuses on the integration of renewable energy. Cross-sectoral energy storage systems that link the electricity, heating, and mobility sectors are discussed in Kap. 14. This chapter focuses on storage integration in the electricity sector. After considering stand-alone networks, the chapter uses practical examples to analyze the various storage applications in the European network. The chapter concludes with a discussion of storage integration in the heating and transportation sectors. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_13 SP - 675 EP - 755 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Bauer, Franz ED - Sterner, Michael ED - Stadler, Ingo T1 - Definition and Classification of Energy Storage Systems T2 - Handbook of Energy Storage N2 - Energy supply always requires energy storage—either as an intrinsic property or as additional system. It is an intrinsic property of solid, liquid, and gaseous fuels, although less so of water-borne heat, but not of electricity. So to meet variable demands and supplies, heat and electricity networks usually require additional storage systems. When they are added to an energy network, should they be viewed as ‘suppliers’ or as ‘consumers’? Who is responsible for covering the costs of storage systems? To categorize storage systems in the energy sector, they first need to be carefully defined. This chapter defines storage as well as storage systems, describes their use, and then classifies storage systems according to temporal, spatial, physical, energy-related, and economic criteria. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_2 SP - 23 EP - 47 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Thema, Johannes A1 - Thema, Martin T1 - Nachnutzungskonzept: Braunkohle-Tagebaue als Pumpspeicherkraftwerk? JF - Energiewirtschaftliche Tagesfragen - et : Zeitschrift für Energiewirtschaft, Recht, Technik und Umwelt N2 - Der Anteil fluktuierender erneuerbarer Energien im deutschen Strommix steigt. Um die Netzstabilität zu erhalten, Fluktuationen im Dargebot nach Wetterlage und saisonal auszugleichen sind absehbar ab ca. 2030 große Stromspeicherkapazitäten erforderlich. Wasser-Pumpspeicherwerke sind derzeit die einzige langjährig erprobte Technologie, die künftig in Braunkohletagebauen, welche im Zuge der Energiewende aufgegeben werden, errichtet werden könnten. Eine Überschlagsrechnung am Beispiel eines Pumpspeicherwerks in verschiedenen Tagebauen zeigt, dass diese mit bis zu 400 GWh ein signifikantes technisches Speicherpotenzial haben. KW - Braunkohle KW - Energiewende KW - erneuerbare Energie KW - Pumpspeicherwerk KW - Speicherkapazität KW - Tagebau Y1 - 2019 VL - 69 IS - 4 SP - 38 EP - 39 PB - ETV Energieverl. CY - Essen ER - TY - CHAP A1 - Sterner, Michael A1 - Bauer, Franz A1 - Hofrichter, Andreas ED - Ausfelder, Florian ED - Dura, Hanna Ewy T1 - Systemanalyse von Power-to-X-Pfaden - Ergebnisse des Satellitenprojektes "SPIKE" T2 - Optionen für ein nachhaltiges Energiesystem mit Power-to-X Technologien : Nachhaltigkeitseffekte - Potenziale Entwicklungsmöglichkeiten; 2. Roadmap des Kopernikus-Projektes "Power-to-X": Flexible Nutzung erneuerbarer Ressourcen (P2X) Y1 - 2019 UR - https://edocs.tib.eu/files/e01fn21/1770760199.pdf SN - 978-3-89746-218-2 SP - 145 EP - 153 PB - DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V CY - Frankfurt am Main ER - TY - CHAP A1 - Sterner, Michael A1 - Bauer, Franz A1 - Crotogino, Fritz A1 - Eckert, Fabian A1 - von Olshausen, Christian A1 - Teichmann, Daniel A1 - Thema, Martin ED - Sterner, Michael ED - Stadler, Ingo T1 - Chemical Energy Storage T2 - Handbook of Energy Storage N2 - Purely electrical energy storage technologies are very efficient, however they are also very expensive and have the smallest capacities. Electrochemical-energy storage reaches higher capacities at smaller costs, but at the expense of efficiency. This pattern continues in a similar way for chemical-energy storage. In terms of capacities, the limits of batteries (accumulators) are reached when low-loss long-term storage is of need. Chemical-energy storage and stocking fulfills these requirements completely. The storing itself may be subject to significant efficiency losses, but, from today’s point of view and in combination with the existing gas and fuel infrastructure, it is the only national option with regards to the long-term storage of renewable energies. Chemical-energy storage is the backbone of today’s conventional energy supply. Solid (wood and coal), liquid (mineral oil), and gaseous (natural gas) energy carriers are ‘energy storages’ themselves, and are stored using different technologies. In the course of energy transition, chemical-energy storage will be of significant importance, mainly as long-term storage for the power sector, but also in the form of combustibles and fuels for transport and heat. Not only are conventional storing technologies discussed within this chapter, but a detailed explanation is also given about the storage of renewable energies in the form of gaseous (power-to-gas, PtG) and liquid (power-to-liquid, PtL) energy carriers for electricity, heat, chemicals, and in the form of synthetic fuels. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_8 SP - 325 EP - 482 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Eckert, Fabian A1 - Gerhardt, Norman A1 - Henning, Hans-Martin A1 - Palzer, Andreas ED - Sterner, Michael ED - Stadler, Ingo T1 - Heating Supply Storage Requirements T2 - Handbook of Energy Storage N2 - Unlike the electricity sector, heating and cooling storage requirements have attracted little public attention. This is because these storage requirements have generally already been met, and will not change significantly in the future. In the electricity sector by contrast, there will be a significant shift from primary energy storage to electricity and final energy storage. Both sectors have remarkably high storage requirements. Almost all households have thermal buffers. The same is true of renewable energy heating systems such as pellet heating, geothermal, or solar-thermal systems. Some households with liquid gas or oil heating even have two storage units: a fuel tank and a thermal buffer. Exceptions include heating systems with upstream storage such as district heating or gas storage. In the future, integration of the electricity and heating sectors by combined heat and power (CHP) generation, heat pumps, power-to-heat (PtH), and power-to-gas (PtG) will facilitate the use of renewable energy, and lead to a paradigm shift. Relying on results from various studies, this chapter examines the development of heating supply in Germany and the resulting thermal storage requirements. The chapter’s later sections provide surplus and storage potential estimates. Cooling requirements are included as ‘process cooling’ under ‘process heat’, and as ‘air-conditioning’ over ‘room heating’. It is primarily integrated into electricity demand. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_4 SP - 137 EP - 163 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Stadler, Ingo A1 - Bauer, Franz A1 - Budt, Marcus A1 - Heindl, Eduard A1 - Wolf, Daniel ED - Sterner, Michael ED - Stadler, Ingo T1 - Mechanical Energy Storage T2 - Handbook of Energy Storage N2 - Chemical-energy storage systems use caverns, porous storage facilities, tanks, and storage rooms to store chemical energy sources. Caverns, caves, and reservoirs can also be used to store gaseous media such as air, liquid media such as water, and solid media such as rock. The principles of mechanical energy storage are based on classical Newtonian mechanics, or in other words on fundamental physics from the eighteenth and nineteenth centuries. As a result, these types of storage are typically divided into two categories; storage of kinetic and potential energy, or storage of ‘pressure energy’. In this chapter, storage media is categorized by its aggregate state, and described by its function and application: first compressed air energy storage and then conventional electricity storage—pumped-storage plants. The chapter continues with a discussion of innovative methods of storing potential energy using water as a medium. These include artificially constructed pumped storage, pumped storage in the open sea, dam storage on rivers, pumped storage on heaps in repurposed mining areas, underfloor or underground pumped storage, and surface mine storage. The chapter concludes with a description of classical and modern flywheel energy storage systems. This age-old technology is then compared with a new concept: mechanical stored energy exploiting both pumped storage and change in the potential energy of rocks or large boulders. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_9 SP - 483 EP - 561 PB - Springer Berlin Heidelberg CY - Berlin, Heidelberg ER - TY - CHAP A1 - Stadler, Ingo A1 - Eckert, Fabian ED - Sterner, Michael ED - Stadler, Ingo T1 - Load Management as an Energy Storage System T2 - Handbook of Energy Storage N2 - Chapters 6 to 9 focused on storage systems that store electric energy in a range of forms, and then release the energy again as electric energy. Chapter 10 discussed the use of thermal-energy storage (TES) systems for thermal management. This chapter examines management methods. These methods use processes that typically convert electric energy into another form of final energy that can also be stored. This form of energy is often thermal energy. But unlike with the systems discussed in previous chapters, here the energy stored is not converted back into electricity. Instead, the energy is used and stored in the same form. From the point of view of the energy supply system, these management methods perform exactly the same function as energy storage systems. This chapter discusses load-management in general, then potential uses of load-management, and finally, current trends. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_11 SP - 611 EP - 636 PB - Springer CY - Berlin, Heidelberg ER - TY - GEN ED - Sterner, Michael ED - Stadler, Ingo T1 - Handbook of Energy Storage BT - Demand, Technologies, Integration N2 - There are several approaches to classifying energy storage systems (see Chaps. 1 and 2). Storage systems are used in a large number of different technologies at various stages of development, and in a wide range of application areas (see Chaps. 3 to 5). This chapter compares the capabilities of the different storage systems using the following criteria:This comparison of storage systems also provides a convenient overview of the various storage systems and their capabilities. KW - Erneuerbare Energien KW - Power-to-Gas KW - Energiespeicher Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0 PB - Springer-Nature CY - Heidelberg, Berlin, New York ET - Translation of 2nd German edition Sterner, „Stadler Energiespeicher – Bedarf, Technologien, Integration“ ER - TY - GEN A1 - Thema, Martin A1 - Bellack, Annett A1 - Weidlich, Tobias A1 - Huber, Harald A1 - Karl, Jürgen A1 - Sterner, Michael T1 - Optimierung biologischer CO2-Methanisierung im Rieselbett-Reaktor BT - das ORBIT-Projekt T2 - 4. Regensburger Energiekongress, Regensburg 26.-27.02.2019 KW - biologische Methanisierung KW - Archaeen KW - Power-to-Gas KW - Erneuerbare Energien KW - Rieselbett-Bioreaktor Y1 - 2019 ER - TY - GEN A1 - Thema, Martin A1 - Bauer, Franz A1 - Sterner, Michael T1 - Power-to-Gas world status report T2 - International Renewable Energy Storage Conference, Düsseldorf 14.-16.03.2019 KW - Erneuerbare Energien, Klimaneutralität, Energiewende, Sektorenkopplung, Power-to-Gas KW - Power-to-Gas KW - Sektorenkopplung KW - Energiewende KW - Klimaneutralität Y1 - 2019 ER - TY - GEN A1 - Sterner, Michael T1 - Sektorenkopplung mit Solarstrom: Theorie und Praxis T2 - 17. Nationale Photovoltaik-Tagung, Kursaal Bern, Schweiz 26.03.2019 KW - Erneuerbare Energien KW - Klimaneutralität KW - Energiewende KW - Sektorenkopplung KW - Solarstrom KW - Photovoltaik Y1 - 2019 ER - TY - CHAP A1 - Thema, Martin A1 - Bellack, Annett A1 - Weidlich, Tobias A1 - Huber, Harald A1 - Karl, Jürgen A1 - Sterner, Michael ED - Held, Jörgen T1 - Optimizing biological CO2-methanation in a trickle-bed reactor BT - the ORBIT-Project T2 - 6th International Conference on Renewable Energy Gas Technology, 20-21 May 2019, Malmö, Sweden. Conference proceedings KW - Biologische Methanisierung KW - Power-to-Gas KW - Erneuerbare Energien KW - Rieselbett-Bioreaktor KW - Archaeen Y1 - 2019 SP - 93 EP - 94 PB - Renewable Energy Technology International AB CY - Lund, Sweden ER -