TY - CHAP A1 - Sterner, Michael A1 - Bauer, Franz A1 - Hofrichter, Andreas ED - Ausfelder, Florian ED - Dura, Hanna Ewy T1 - Systemanalyse von Power-to-X-Pfaden - Ergebnisse des Satellitenprojektes "SPIKE" T2 - Optionen für ein nachhaltiges Energiesystem mit Power-to-X Technologien : Nachhaltigkeitseffekte - Potenziale Entwicklungsmöglichkeiten; 2. Roadmap des Kopernikus-Projektes "Power-to-X": Flexible Nutzung erneuerbarer Ressourcen (P2X) Y1 - 2019 UR - https://edocs.tib.eu/files/e01fn21/1770760199.pdf SN - 978-3-89746-218-2 SP - 145 EP - 153 PB - DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V CY - Frankfurt am Main ER - TY - CHAP A1 - Schneider, Ingo A1 - Nonn, Aida A1 - Völling, Alexander A1 - Mondry, A. A1 - Kalwa, Christoph T1 - A damage mechanics based evaluation of dynamic fracture resistance in gas pipelines T2 - Procedia Materials Science, Volume 3 N2 - Investigation of running ductile fracture in gas transmission pipelines and the derivation of reliable crack arrest prediction methods belong to major topics in pipeline research. The yet available crack arrest criterion, known as the Battelle Two-Curve Method (BTCM), leads to reliable predictions up to grade X70 line pipe steels for which it has been validated. This includes specific limits in terms of mechanical properties, pressure and geometry. The application of this criterion to modern pipeline steels, i.e. especially grades X80 and beyond in combination with larger diameters and high pressure, has led to mispredictions of the BTCM. Hence, in order to ensure safe design of pipelines, new methods are required based on in depth knowledge and appropriate characterization of material resistance. This paper presents a procedure for the assessment of dynamic ductile fracture resistance based on combined experimental and numerical investigations. The procedure involves quasi-static and dynamic drop- weight tear testing (DWTT) on modified specimens with pre-fatigued crack for grades X65, X80 and X100 materials, and the application of cohesive zone (CZ) and Gurson-Tveergard-Needleman (GTN) models to describe ductile material damage. The damage model parameters are calibrated on basis of DWTT results and subsequently used to simulate dynamic crack propagation in a pipeline. The influence of material properties (strain hardening, toughness), pipe geometry, usage factor and decompression behaviour on ductile fracture propagation behaviour is studied and evaluated. The results will contribute to an enhanced understanding of major parameters controlling ductile fracture propagation and will help to establish a reliable procedure for safe design of new high-capacity pipelines with regard to crack arrest. KW - Pipeline KW - Dynamic ductile fracture KW - Crack arrest KW - Cohesive zone model KW - DWT testing Y1 - 2014 U6 - https://doi.org/10.1016/j.mspro.2014.06.315 VL - 3 SP - 1956 EP - 1964 ER - TY - JOUR A1 - Haslbeck, Matthias A1 - Brückl, Oliver T1 - Netzplanung Mittelspannungsnetze: Abbildung eines innovativen Blindleistungsmanagements, Teil 1 und 2 JF - ew - Magazin für die Energiewirtschaft Y1 - 2020 IS - 7-8 und 9 SP - 36 EP - 39 ER - TY - CHAP A1 - Sterner, Michael A1 - Bauer, Franz A1 - Crotogino, Fritz A1 - Eckert, Fabian A1 - von Olshausen, Christian A1 - Teichmann, Daniel A1 - Thema, Martin ED - Sterner, Michael ED - Stadler, Ingo T1 - Chemical Energy Storage T2 - Handbook of Energy Storage N2 - Purely electrical energy storage technologies are very efficient, however they are also very expensive and have the smallest capacities. Electrochemical-energy storage reaches higher capacities at smaller costs, but at the expense of efficiency. This pattern continues in a similar way for chemical-energy storage. In terms of capacities, the limits of batteries (accumulators) are reached when low-loss long-term storage is of need. Chemical-energy storage and stocking fulfills these requirements completely. The storing itself may be subject to significant efficiency losses, but, from today’s point of view and in combination with the existing gas and fuel infrastructure, it is the only national option with regards to the long-term storage of renewable energies. Chemical-energy storage is the backbone of today’s conventional energy supply. Solid (wood and coal), liquid (mineral oil), and gaseous (natural gas) energy carriers are ‘energy storages’ themselves, and are stored using different technologies. In the course of energy transition, chemical-energy storage will be of significant importance, mainly as long-term storage for the power sector, but also in the form of combustibles and fuels for transport and heat. Not only are conventional storing technologies discussed within this chapter, but a detailed explanation is also given about the storage of renewable energies in the form of gaseous (power-to-gas, PtG) and liquid (power-to-liquid, PtL) energy carriers for electricity, heat, chemicals, and in the form of synthetic fuels. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_8 SP - 325 EP - 482 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Eckert, Fabian A1 - Gerhardt, Norman A1 - Henning, Hans-Martin A1 - Palzer, Andreas ED - Sterner, Michael ED - Stadler, Ingo T1 - Heating Supply Storage Requirements T2 - Handbook of Energy Storage N2 - Unlike the electricity sector, heating and cooling storage requirements have attracted little public attention. This is because these storage requirements have generally already been met, and will not change significantly in the future. In the electricity sector by contrast, there will be a significant shift from primary energy storage to electricity and final energy storage. Both sectors have remarkably high storage requirements. Almost all households have thermal buffers. The same is true of renewable energy heating systems such as pellet heating, geothermal, or solar-thermal systems. Some households with liquid gas or oil heating even have two storage units: a fuel tank and a thermal buffer. Exceptions include heating systems with upstream storage such as district heating or gas storage. In the future, integration of the electricity and heating sectors by combined heat and power (CHP) generation, heat pumps, power-to-heat (PtH), and power-to-gas (PtG) will facilitate the use of renewable energy, and lead to a paradigm shift. Relying on results from various studies, this chapter examines the development of heating supply in Germany and the resulting thermal storage requirements. The chapter’s later sections provide surplus and storage potential estimates. Cooling requirements are included as ‘process cooling’ under ‘process heat’, and as ‘air-conditioning’ over ‘room heating’. It is primarily integrated into electricity demand. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_4 SP - 137 EP - 163 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Stadler, Ingo A1 - Bauer, Franz A1 - Budt, Marcus A1 - Heindl, Eduard A1 - Wolf, Daniel ED - Sterner, Michael ED - Stadler, Ingo T1 - Mechanical Energy Storage T2 - Handbook of Energy Storage N2 - Chemical-energy storage systems use caverns, porous storage facilities, tanks, and storage rooms to store chemical energy sources. Caverns, caves, and reservoirs can also be used to store gaseous media such as air, liquid media such as water, and solid media such as rock. The principles of mechanical energy storage are based on classical Newtonian mechanics, or in other words on fundamental physics from the eighteenth and nineteenth centuries. As a result, these types of storage are typically divided into two categories; storage of kinetic and potential energy, or storage of ‘pressure energy’. In this chapter, storage media is categorized by its aggregate state, and described by its function and application: first compressed air energy storage and then conventional electricity storage—pumped-storage plants. The chapter continues with a discussion of innovative methods of storing potential energy using water as a medium. These include artificially constructed pumped storage, pumped storage in the open sea, dam storage on rivers, pumped storage on heaps in repurposed mining areas, underfloor or underground pumped storage, and surface mine storage. The chapter concludes with a description of classical and modern flywheel energy storage systems. This age-old technology is then compared with a new concept: mechanical stored energy exploiting both pumped storage and change in the potential energy of rocks or large boulders. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_9 SP - 483 EP - 561 PB - Springer Berlin Heidelberg CY - Berlin, Heidelberg ER - TY - JOUR A1 - Estermann, Thomas A1 - Newborough, Marcus N. A1 - Sterner, Michael T1 - Power-to-gas systems for absorbing excess solar power in electricity distribution networks JF - International Journal of Hydrogen Energy N2 - The feasibility of implementing power-to-gas systems, to absorb surplus solar power from electricity distribution networks and carbon dioxide from biomass anaerobic digestion (AD) plant, in order to produce synthetic methane was investigated for a region of Southern Germany that has a high solar power penetration. The analysis was based on time series electricity data for 2012 from which future load profiles were computed in accordance with the expected installed capacities of solar power across the period 2015–2025. The electrolyser capacity required to absorb 20% of excess solar energy occurring within the region's low voltage network in 2025 was estimated to be 370 MWe. First order considerations of the region's gas grid, electricity network and existing AD sites suggest that such a deployment could be achieved by installing sub-MW (and some multi-MW) power-to-gas plant at several hundred AD sites. KW - Energy storage KW - Power-to-gas KW - Solar power KW - Synthetic methane Y1 - 2016 U6 - https://doi.org/10.1016/j.ijhydene.2016.05.278 VL - 41 IS - 32 SP - 13950 EP - 13959 PB - Elsevier ER - TY - CHAP A1 - Stadler, Ingo A1 - Eckert, Fabian ED - Sterner, Michael ED - Stadler, Ingo T1 - Load Management as an Energy Storage System T2 - Handbook of Energy Storage N2 - Chapters 6 to 9 focused on storage systems that store electric energy in a range of forms, and then release the energy again as electric energy. Chapter 10 discussed the use of thermal-energy storage (TES) systems for thermal management. This chapter examines management methods. These methods use processes that typically convert electric energy into another form of final energy that can also be stored. This form of energy is often thermal energy. But unlike with the systems discussed in previous chapters, here the energy stored is not converted back into electricity. Instead, the energy is used and stored in the same form. From the point of view of the energy supply system, these management methods perform exactly the same function as energy storage systems. This chapter discusses load-management in general, then potential uses of load-management, and finally, current trends. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_11 SP - 611 EP - 636 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Thema, Martin A1 - Sterner, Michael A1 - Lenck, Thorsten A1 - Götz, Philipp T1 - Necessity and Impact of Power-to-gas on Energy Transition in Germany JF - Energy Procedia N2 - The present paper gives an outlook on a bandwidth of required installed power-to-gas capacity in the German power sector fed by 100% renewable generation until 2050. Two scenarios were simulated to quantify cost effects of power-to-gas on the electricity system: once with, once without additional short-term flexibility options to a system using fossil natural gas as sole flexibility option instead. As a result, at latest in 2035, power-to-gas capacity expansion has to take place to reach required installed capacities of up to 89-134 GW in 2050. Application of power-to-gas as long-term flexibility leads to cost savings of up to 11,7-19 bn Euro enabling a fully renewable system in 2050. KW - decarbonization KW - energy storage KW - energy transition KW - Power-to-Gas KW - renewable energy KW - supply security KW - surplus energy KW - system costs Y1 - 2016 U6 - https://doi.org/10.1016/j.egypro.2016.10.129 VL - 99 SP - 392 EP - 400 PB - Elsevier ER - TY - GEN ED - Sterner, Michael ED - Stadler, Ingo T1 - Handbook of Energy Storage BT - Demand, Technologies, Integration N2 - There are several approaches to classifying energy storage systems (see Chaps. 1 and 2). Storage systems are used in a large number of different technologies at various stages of development, and in a wide range of application areas (see Chaps. 3 to 5). This chapter compares the capabilities of the different storage systems using the following criteria:This comparison of storage systems also provides a convenient overview of the various storage systems and their capabilities. KW - Erneuerbare Energien KW - Power-to-Gas KW - Energiespeicher Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0 PB - Springer-Nature CY - Heidelberg, Berlin, New York ET - Translation of 2nd German edition Sterner, „Stadler Energiespeicher – Bedarf, Technologien, Integration“ ER - TY - GEN A1 - Thema, Martin A1 - Bellack, Annett A1 - Weidlich, Tobias A1 - Huber, Harald A1 - Karl, Jürgen A1 - Sterner, Michael T1 - Optimierung biologischer CO2-Methanisierung im Rieselbett-Reaktor BT - das ORBIT-Projekt T2 - 4. Regensburger Energiekongress, Regensburg 26.-27.02.2019 KW - biologische Methanisierung KW - Archaeen KW - Power-to-Gas KW - Erneuerbare Energien KW - Rieselbett-Bioreaktor Y1 - 2019 ER - TY - GEN A1 - Thema, Martin A1 - Bauer, Franz A1 - Sterner, Michael T1 - Power-to-Gas world status report T2 - International Renewable Energy Storage Conference, Düsseldorf 14.-16.03.2019 KW - Erneuerbare Energien, Klimaneutralität, Energiewende, Sektorenkopplung, Power-to-Gas KW - Power-to-Gas KW - Sektorenkopplung KW - Energiewende KW - Klimaneutralität Y1 - 2019 ER - TY - GEN A1 - Sterner, Michael T1 - Sektorenkopplung mit Solarstrom: Theorie und Praxis T2 - 17. Nationale Photovoltaik-Tagung, Kursaal Bern, Schweiz 26.03.2019 KW - Erneuerbare Energien KW - Klimaneutralität KW - Energiewende KW - Sektorenkopplung KW - Solarstrom KW - Photovoltaik Y1 - 2019 ER - TY - GEN A1 - Sterner, Michael T1 - Ohne Speicher, Wasserstoff und Power-to-X keine Dekarbonisierung von Verkehr und Industrie – Möglichkeiten und Notwendigkeit der integrierten Sektorenkopplung T2 - CIGRE/CIRED Informationsveranstaltung 2020, Leipzig, 13.10.2020 KW - Erneuerbare Energien KW - Klimaneutralität KW - Energiewende KW - Sektorenkopplung KW - Klimaschutz KW - Energiespeicher KW - Power-to-X Y1 - 2020 ER - TY - GEN A1 - Sterner, Michael T1 - Power-to-Gas technologies in the energy sector and their role in the fight against climate change T2 - Hungarian Power-to-Gas REKK Forum, Budapest Corvinus University, 12.02.2020 KW - Erneuerbare Energien KW - Klimaneutralität KW - Energiewende KW - Sektorenkopplung KW - Power-to-Gas Y1 - 2020 ER - TY - GEN A1 - Sterner, Michael T1 - Die Rolle von Wasserstoff in allen Sektoren T2 - Sektorenübergreifende Erkenntnisse zu PtX Fachforum "Wasserstoff Technologie, Prozesssicherheit und Regionalentwicklung", Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V.) Meinsberg, 23.9.2020 KW - Erneuerbare Energien KW - Klimaneutralität KW - Energiewende KW - Sektorenkopplung KW - Wasserstoff Y1 - 2020 ER - TY - GEN A1 - Sterner, Michael T1 - Power-to-X im Kontext der Energiewende und des Klimaschutzes in Deutschland T2 - Hydrogen Dialogue H2.Bayern, 18.11.2020, Nürnberg Friedrich-Alexander-Universität KW - Erneuerbare Energien KW - Klimaneutralität KW - Energiewende KW - Sektorenkopplung KW - Power-to-X Y1 - 2020 ER - TY - GEN A1 - Sterner, Michael T1 - Bedeutung des Klimaschutzes für die Wirtschaft in Ostbayern T2 - Veranstaltungsreihe der Freunde der OTH Regensburg e. V., Regensburg, Regensburg 25.11.2020 KW - Erneuerbare Energien KW - Klimaneutralität KW - Energiewende KW - Sektorenkopplung KW - Klimaschutz Y1 - 2020 ER - TY - GEN A1 - Sterner, Michael A1 - Schumm, Leon T1 - Netzpuffer – Speicher & Kraftwerke als virtuelle Leitungen für mehr Versorgungssicherheit und EE-Integration in Nord und Süd T2 - 7. Smart-Grid-Fachtagung WAGO, Hannover, 29. Sept. 2021 KW - Stromspeicher KW - Batterien KW - Netzpuffer KW - Stromnetz Y1 - 2021 ER - TY - GEN A1 - Sterner, Michael T1 - Vom Klimaschutz zum Wasserstoff in Verkehr und Industrie – jetzt regional handeln T2 - Kick-Off Workshop: HyExpert Wasserstoffmodellregion Fichtelgebirge, Wunsiedel, 22.09.2020 KW - Erneuerbare Energien KW - Klimaneutralität KW - Energiewende KW - Sektorenkopplung KW - Wasserstoff Y1 - 2020 ER -