TY - INPR A1 - Gärtner, Sebastian A1 - Marx-Schubach, Thomas A1 - Gaderer, Matthias A1 - Schmitz, Gerhard A1 - Sterner, Michael T1 - Introduction of an Innovative Energy Concept for low Emission Glass Melting based on Carbon Capture and Usage N2 - Due to the very high fossil energy demand, the glass industry is looking for innovative approaches for the reduction of CO2 emissions and the integration of renewable energy sources. In this paper, we present a novel power-to-gas concept, which has no impact on established melting processes and discuss it for this purpose. A special focus is set on the required CO2 capture from typical flue gases in the glass industry, as this process has not been investigated in detail yet. We used a process simulation approach to investigate post-combustion CO2 capture by absorption processes, followed by a techno-economic evaluation. Our investigations found the designed CO2 capture plant to be approx. 400 times smaller than absorption based CO2 separation processes for conventional power plants. Due to the many options for waste heat utilization, the waste heat required for CO2 desorption can be generated in a particularly efficient and cost-effective way. The resulting CO2 avoidance costs range between 41-42 €/t CO2, depending on waste heat utilization for desorption, and thus offer a cost effective way of CO2 removal from glass industry melting processes. These costs are well below the values of 50-65 €/t CO2 described so far for comparable industrial applications. In addition, we describe optimization options, like solvent and process improvements, to enable further cost reductions. These results motivate further research and development on the overall process presented in this work. KW - glass KW - Oxyfuel KW - Methanation KW - Power-to-Gas KW - CO2 capture KW - Economic Analysis Y1 - 2022 U6 - https://doi.org/10.31224/2642 ER - TY - JOUR A1 - Kaul, Anja A1 - Boellmann, Andrea A1 - Thema, Martin A1 - Kalb, Larissa A1 - Stoeckl, Richard A1 - Huber, Harald A1 - Sterner, Michael A1 - Bellack, Annett T1 - Combining a robust thermophilic methanogen and packing material with high liquid hold-up to optimize biological methanation in trickle-bed reactors JF - Bioresource technology N2 - The hydrogen gas-to-liquid mass transfer is the limiting factor in biological methanation. In trickle-bed reactors, mass transfer can be increased by high flow velocities in the liquid phase, by adding a packing material with high liquid hold-up or by using methanogenic archaea with a high methane productivity. This study developed a polyphasic approach to address all methods at once. Various methanogenic strains and packings were investigated from a microbial and hydrodynamic perspective. Analyzing the ability to produce high-quality methane and to form biofilms, pure cultures of Methanothermobacter performed better than those of the genus Methanothermococcus. Liquid and static hold-up of a packing material and its capability to facilitate attachment was not attributable to a single property. Consequently, it is recommended to carefully match organism and packing for optimized performance of trickle-bed reactors. The ideal combination for the ORBIT system was identified as Methanothermobacter thermoautotrophicus IM5 and DuraTop (R). KW - BIOCATALYTIC METHANATION KW - CARBON-DIOXIDE KW - hydrogen KW - Liquid hold-up maximization KW - MASS-TRANSFER KW - Methane production KW - Methanothermobacter KW - Methanothermococcus KW - Optimized packing-organism combination KW - THERMOAUTOTROPHICUS Y1 - 2022 U6 - https://doi.org/10.1016/j.biortech.2021.126524 VL - 345 PB - Elsevier ER - TY - CHAP A1 - Kreuzer, Reinhard A1 - Haslbeck, Matthias A1 - Brückl, Oliver T1 - Modellierung von Mittelspannungsnetzen zur verbesserten Nachbildung von Wirk- und Blindleistungsflüssen T2 - Tagungsband der Fachtagung "Zukünftige Stromnetze für erneuerbare Energien" am 30./31. Januar 2018 in Berlin N2 - Das vom BMWi geförderte Forschungsprojekt SyNErgie (03/2015 bis 05/2018) beschäftigt sich mit der Weiterentwicklung von Netzplanungsprozessen [1]. Im Fokus steht dabei die Modellierung von Blindleistungsflüssen und die dezentrale Nutzung von Blindleistungsquellen (z. B. Wechselrichter, Ladedrosseln, Kondensatoren) in Mittelspannungsnetzen, über welche der Blindleistungshaushalt letztendlich beeinflusst werden soll. Im Rahmen dieses Beitrags wird anhand eines realen Mittelspannungsnetzes (MS-Netz) gezeigt, welche Modellierungsschritte zur Erstellung eines möglichst realitätsnahen Simulationsabbilds nötig sind. Dies ist notwendig, um der Verteilnetzplanung eine robuste Planungsgrundlage für die Ableitung von Entscheidungen im Rahmen eines Blindleistungsmanagements zur Verfügung zu stellen. Y1 - 2018 UR - https://www.fenes.net/wp-content/uploads/2019/03/SyNErgie_Paper_2018_Kreuzer_Modellierung_MSNetze.pdf ER - TY - CHAP A1 - Rauch, Johannes A1 - Brückl, Oliver T1 - Entwicklung eines Regelverfahrens für einen optimierten und zentralen Blindleistungsabruf zur Beeinflussung des Blindleistungshaushaltes von Mittelspannungsverteilungsnetzen unter Einhaltung von Netzrestriktionen T2 - Zukünftige Stromnetze, 30.-31.Jan.2019, Berlin Y1 - 2019 SP - 421 EP - 437 PB - Conexio CY - Pforzheim ER - TY - JOUR A1 - Brückl, Oliver T1 - Plädoyer für die wettbewerbliche Bereitstellung von Blindleistung JF - ew - Magazin für die Energiewirtschaft - Spezial: Digitalisierung Y1 - 2018 UR - https://emagazin.ew-magazin.de/de/profiles/a21024e15cd4/editions/dd6db0d02570767aa71f VL - 117 IS - 1 SP - 46 EP - 48 PB - VDE Verlag ER - TY - CHAP A1 - Haslbeck, Matthias T1 - Innovative Aspekte der Netzplanung im Verteilungsnetz T2 - 2. OTTI-Konferenz Zukünftige Stromnetze für Erneuerbare Energien, Hilton-Hotel Berlin, 27./28. Januar 2015 N2 - In den Verteilungsnetzen (VN) besteht erheblicher Optimierungsbedarf, um die geplanten Leistungen an dezentralen Erzeugungsanlagen (EZA) aufnehmen und um die erzeugte Energie an das Übertragungsnetz abgeben zu können. Bislang konnte der Aufwand für die Netzplanung im VN mittels standardisierter Abläufe und großzügigen Reserven im Spannungsband und der Stromtragfähigkeit begrenzt werden. Im Zuge des Zubaus an EZA schwinden diese Reserven und Netzplanungsaufgaben müssen individueller für einzelne Netzabschnitte gelöst werden. Die Forschungsstelle für Energienetze und Energiespeicher (FENES) der OTH Regensburg beschäftigt sich u. a. mit der Fragestellung wie die Netzplanung im Verteilungsnetz hinsichtlich der neu entstandenen Herausforderungen optimiert werden kann und gleichzeitig praktikabel bleibt. Kernthemen sind dabei das Spannungs- und das Blindleistungsmanagement im Verteilungsnetz. Im Zuge der Energiewende gilt es die vorhandene Netzinfrastruktur noch effizienter auszunutzen und den Ausbau noch stärker bedarfsorientiert zu gestalten. Infolgedessen bewegt sich der Netzbetrieb näher an den Grenzen der Netzparameter (z. B. Spannungshaltung und Auslastung). Von daher müssen bislang praktizierte Verfahren weiter entwickelt werden, , um weiterhin einen sicheren und stabilen Netzbetrieb zu gewährleisten. KW - Energienetz KW - Energiespeicher KW - Energiewende KW - Leistungsmanagement KW - Netzbetrieb KW - Netzplanung KW - Spannband KW - Stromtragfähigkeit Y1 - 2015 SN - 978-3-943891-46-1 SP - 110 EP - 115 CY - Regensburg ER - TY - GEN A1 - Sterner, Michael T1 - Insight into Power-to-Gas/Liquids: a solution for sustainable transport besides e-mobility T2 - Conference Low Carbon Transport - Engineering the Fuels of the Future (Institution of Mechanical Engineers), London 09.07.2019 KW - Erneuerbare Energien KW - Klimaneutralität KW - Energiewende KW - Sektorenkopplung KW - Power-to-Gas Y1 - 2019 PB - Institution of Mechanical Engineers CY - London ER - TY - CHAP A1 - Kraus, Hermann A1 - Gschoßmann, David A1 - Brückl, Oliver T1 - Automatisierung von Netzplanungsprozessen in der Verteilnetzebene – Q(U)- und cosj(P)-Blindleistungsregelung dezentraler Anlagen als spannungshaltende Netzausbaumaßnahmen T2 - Tagungsband Zukünftige Stromnetze 2019, 30.-31.Jan.2019, Berlin N2 - Diese Arbeit befasst sich mit automatisierten Netzplanungsprozessen und gibt einen kurzen Einblick in das Entscheidungsunterstützungssystem, welches im EU-Projekt CrossEnergy entwickelt wird. Detaillierter wird aber auf die Konzipierung und Umsetzung eines automatisierten Einsatzes der Blindleistungsregelung von dezentralen Erzeugungs­ analgen eingegangen, die als spannungshaltende Netzausbaumaßnahme zur Verfügung stehen. Die vorgestellten Methoden und Algorithmen fokussieren sich auf die Q(U)- und coscp(P)-Regelungsarten. Y1 - 2019 SP - 407 EP - 420 PB - Connexio CY - Pforzheim ER - TY - RPRT A1 - Sterner, Michael A1 - Thema, Martin A1 - Eckert, Fabian A1 - Moser, Albert A1 - Schäfer, Andreas A1 - Drees, Tim A1 - Christian Rehtanz, A1 - Ulf Häger, A1 - Kays, Jan A1 - Seack, André A1 - Dirk Uwe Sauer, A1 - Matthias Leuthold, A1 - Philipp Stöcker, T1 - Stromspeicher in der Energiewende - Untersuchung zum Bedarf an neuen Stromspeichern in Deutschland für den Erzeugungsausgleich, Systemdienstleistungen und im Verteilnetz BT - Studie N2 - Wie groß ist der Speicherbedarf in Deutschland in der weiteren Umsetzung der Energiewende? Welche Rolle spielen Batteriespeicher, Pumpspeicher, Power-to-Gas etc. im Kontext anderer Flexibilitätsoptionen auf den verschiedenen Netzebenen? Wie entwickelt sich der Markt für Batterien und Wasserstoff? In unserer Agora-Speicherstudie haben wir auch erstmalig den Begriff Power-to-X definiert und damit die bis dato entstandenen Begriffe Power-to-Gas, Power-to-Liquids, Power-to-Products, Power-to-Chemicals etc. zusammengefasst. Y1 - 2014 U6 - https://doi.org/10.13140/RG.2.2.31804.56964 PB - Agora Energiewende CY - Berlin ER - TY - CHAP A1 - Stadler, Ingo A1 - Eckert, Fabian ED - Sterner, Michael ED - Stadler, Ingo T1 - Lastmanagement als Energiespeicher T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Lastverteilung KW - Energiespeicher Y1 - 2017 SN - 978-3-662-48893-5 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_11 SP - 619 EP - 644 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER - TY - CHAP A1 - Sterner, Michael A1 - Eckert, Fabian A1 - Henning, Hans-Martin A1 - Trost, Tobias ED - Sterner, Michael ED - Stadler, Ingo T1 - Storage Demand in the Transport and Chemical Sector T2 - Handbook of Energy Storage N2 - In the transport sector, energy transition is still in its beginnings: shares of renewable fuels are at 5% and are, with the exception of a small percentage in electrical rail transport, almost entirely restricted to biofuel. The transport sector, i.e., road, air, shipping, and rail traffic, consumes around 30% of all final energy in Germany and its dependency of over 90% on petroleum is still very high. As a result, its shares in greenhouse gas emissions are at 20%. The necessary structural change in mobility, based on energy transition, is closely linked to the question of operating energy and of energy storage also. Aside from vehicles directly powered by wind or solar energy, mobility without storage is not possible: fuel tanks in cars, gas stations, and airplanes are omnipresent. The focus of the considerations on storage demand in the transport sector is on the question of how these storages can be used with renewable energies via bio and synthetic fuels, and on the question of how much storage is necessary for these new drive technologies, such as e-mobility. Before this, mobility needs today and in future need to be examined. In the chemical sector, the situation is very much alike: there is a great dependency on fossil resources, and decarbonization is inevitable to achieve ambitious climate goals. The structural change to convert and store renewable electricity as primary energy via power-to-X (PtX) represents a storage demand. First estimates will conclude this chapter. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_5 SP - 165 EP - 188 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Breuer, Christopher A1 - Drees, Tim A1 - Eckert, Fabian A1 - Maaz, Andreas A1 - Pape, Carsten A1 - Rotering, Niklas A1 - Thema, Martin ED - Sterner, Michael ED - Stadler, Ingo T1 - Storage Demand in Power Supply T2 - Handbook of Energy Storage N2 - Energy storage systems (in the past as well as today) are one significant part in the energy supply. The following three chapters describe how storage demand will develop in the future for the electricity, heat, and traffic sectors, as well as for non-energetic consumption of fossil resources (the chemical industry). Chapter 3, the core of this section on storage demand, makes clear how and why the electricity sector is the nucleus of the energy supply of all sectors and why it creates essential bridges between electricity, heat, and transport sectors, as well as with the chemical industry. If planned electricity network expansion takes place and flexibilities in generation and consumption are fully exploited, the demand for electricity storage, according to present estimates, will only reach a significant scale at 60–80% shares of renewable energy in the power supply. Network expansion has a great impact on the storage demand, as well as flexible power generation in power plants, combined heat and power (CHP), and flexible consumption via demand-side management (DSM). Four studies in the context of storage demand and the role of energy storage systems for flexibility are comprehensively addressed. The authors and the co-authors were themselves participants in these studies, which will be complemented by ongoing research. A meta-study summary of the main results is shown in Abschn. 3.7, and these results are compared with seven further studies. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_3 SP - 51 EP - 136 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael ED - Sterner, Michael ED - Stadler, Ingo T1 - Energy Storage Through the Ages T2 - Handbook of Energy Storage N2 - Human beings have relied on stored energy since time immemorial. The planet’s first mechanism for storing energy arose two billion years ago. Photosynthesis captures solar energy in chemical bonds; it is a process on which all life depends. With the discovery of fire around one-and-a-half million years ago, early man learned to access this stored energy by burning wood. Only since the Industrial Revolution have humans used fossil fuels, which are the results of biomass produced millions of years ago, then subjected to geological processes. Today, the long-term objective is to utilize sustainable biomass storage, replicate it by technical means, and to develop new storage technologies. This chapter is about the history of energy storage as it pertains to the carbon cycle. It begins with a natural energy storage system—photosynthesis—and examines its products biomass, peat, and fossil fuels before turning to storage technology in the era of renewable energies. It will also discuss how stored energy is used. This chapter focuses on natural biogenic and fossil energy storage. Other chapters are devoted to artificial storage technologies, including batteries, pumped-storage, and power-to-gas (PtG). Each begins with a short history of its respective technology. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_1 SP - 3 EP - 22 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Stadler, Ingo A1 - Eckert, Fabian A1 - Gerhardt, Norman A1 - von Olshausen, Christian A1 - Thema, Martin A1 - Trost, Tobias ED - Sterner, Michael ED - Stadler, Ingo T1 - Storage Integration for Coupling Different Energy Sectors T2 - Handbook of Energy Storage N2 - Electricity is becoming the primary source of energy, a trend that is particularly apparent through the coupling of the electricity sector with other energy sectors. In addition to the established links between the electricity and heating sectors using combined heat and power (CHP), which is supplemented by electric heat-pumps and power-to-heat (PtH), other new links are also emerging. These links are manifesting in the form of electro-mobility and electric fuels in the electricity and transport sectors; and in the electricity and gas sector they are appearing in the form of power-to-gas (PtG). The production of basic chemical materials such as methanol or polymers using electrical energy, water, and CO2 will also play a role in the future. However, the latter will not be dealt with explicitly here. Instead we will consider in detail other aspects of electricity as a primary energy source and its integration and application for energy storage. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_14 SP - 757 EP - 803 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Stadler, Ingo A1 - Eckert, Fabian A1 - Thema, Martin ED - Sterner, Michael ED - Stadler, Ingo T1 - Storage Integration in Individual Energy Sectors T2 - Handbook of Energy Storage N2 - How is energy storage integrated and currently implemented in the electricity supply, heating supply, and mobility sectors? This chapter provides both theoretical and practical answers to that question. The chapter focuses on the integration of renewable energy. Cross-sectoral energy storage systems that link the electricity, heating, and mobility sectors are discussed in Kap. 14. This chapter focuses on storage integration in the electricity sector. After considering stand-alone networks, the chapter uses practical examples to analyze the various storage applications in the European network. The chapter concludes with a discussion of storage integration in the heating and transportation sectors. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_13 SP - 675 EP - 755 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sörgel, Matthias A1 - Riederer, Michael A1 - Held, Andreas A1 - Plake, Daniel A1 - Zhu, Zhilin A1 - Foken, Thomas A1 - Meixner, Franz X. ED - Foken, Thomas T1 - Trace Gas Exchange at the Forest Floor T2 - Energy and Matter Fluxes of a Spruce Forest Ecosystem N2 - Exchange conditions at the forest floor are complex due to the heterogeneity of sources and sinks and the inhomogeneous radiation but are important for linking soil respiration to measurements in the trunk space or above canopy. Far more attention has therefore been paid to above and within canopy flows, but even studies that addressed forest floor exchange do not present measurements below 1 m or 2 m. We used a multilayer model that explicitly resolves the laminar layer, the buffer layer, and the turbulent layer to calculate fluxes from the measured profiles in the lowest meter above ground and to calculate effective surface concentrations from given fluxes. The calculated fluxes were compared to measured eddy covariance fluxes of sensible heat and O3 and to chamber derived soil fluxes of CO2 and 222Rn. Sensible heat fluxes agreed surprisingly well given the heterogeneity of radiative heating and the generally low fluxes (max. 25 W m−2). The chamber fluxes turned out to be not comparable as the chamber fluxes were too low, probably due to one of the well-known problems of enclosures such as pressure differences, disturbed gradients and exclusion of naturally occurring turbulence events and surface cooling. The O3 fluxes agreed well for high O3 values reaching down to the forest floor during full coupling of the canopy by coherent structures. During most of the time, the model overestimated the fluxes as chemical reactions were dominating within the profile. One new approach was to calculate the effective surface concentration from a given flux and compare this to measured surface concentrations. This allowed the identification of situations with a coupled and decoupled forest floor layer, which has important consequences for respiration measurements in the trunk space or above canopy and should be considered in upcoming studies. KW - Chamber Flux KW - Eddy Covariance KW - Forest Floor KW - Multilayer Model KW - Nitrogen Oxide Y1 - 2017 SN - 978-3-319-49387-9 U6 - https://doi.org/10.1007/978-3-319-49389-3_8 VL - 229 SP - 157 EP - 179 PB - Springer CY - Cham ER - TY - CHAP A1 - Sterner, Michael A1 - Bauer, Franz ED - Sterner, Michael ED - Stadler, Ingo T1 - Definition and Classification of Energy Storage Systems T2 - Handbook of Energy Storage N2 - Energy supply always requires energy storage—either as an intrinsic property or as additional system. It is an intrinsic property of solid, liquid, and gaseous fuels, although less so of water-borne heat, but not of electricity. So to meet variable demands and supplies, heat and electricity networks usually require additional storage systems. When they are added to an energy network, should they be viewed as ‘suppliers’ or as ‘consumers’? Who is responsible for covering the costs of storage systems? To categorize storage systems in the energy sector, they first need to be carefully defined. This chapter defines storage as well as storage systems, describes their use, and then classifies storage systems according to temporal, spatial, physical, energy-related, and economic criteria. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_2 SP - 23 EP - 47 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Stadler, Ingo A1 - Sterner, Michael ED - Droege, Peter T1 - Urban Energy Storage and Sector Coupling T2 - Urban Energy Transition N2 - Global warming, greenhouse gas emissions, and the general transition toward renewable energy resources are mentioned many times within this book, and will not be repeated again here. Countries that are transitioning to use of more renewable energy sources are mainly using wind and solar power—except for a few countries that, due to their prerequisites, will mainly use hydro power and/or bioenergy. The transmission process in terms of energy generation so far is mainly happening in rural areas—not in urban centers. Most technologies do not really play an important role in urban areas, and are mainly focused on the application of solar energy. Solar energy is widely applied more in rural areas, although investigations show that its application in urban areas already fits well into the existing grid infrastructure. Whereas rural areas are more prone to grid integration problems, the energy infrastructure in urban centers is already well prepared for renewables integration. In fostering tight bundles of potentially linked energy generation, distribution, networking, and use across power and thermal systems in stationary and mobile modes, urban centers become particularly critical in the energy transition processes as energy systems are becoming completely based on renewable sources without a nuclear or fossil-based backbone. This chapter discusses the almost unlimited energy storage possibilities. It will show their enormous capabilities, but also their significant differences in many physical and economical parameters. Next, the authors discuss the necessity of combining and coupling the different energy sectors for electricity, heat, cold, gas, and transport. Finally, the authors present the conclusion that only when coupling the energy sectors and using cheap and efficient energy storage options from one energy sector to solve challenges within another energy sector will the energy transition process be managed in an efficient way. KW - Energy storage KW - energy transition KW - Greenhouse gas emissions KW - RENEWABLE ENERGY KW - Renewable sources KW - sector coupling Y1 - 2018 SN - 978-0-08-102074-6 U6 - https://doi.org/10.1016/B978-0-08-102074-6.00026-7 SP - 225 EP - 244 PB - Elsevier ET - 2. ed. ER - TY - JOUR A1 - Thema, Johannes A1 - Thema, Martin T1 - Nachnutzungskonzept: Braunkohle-Tagebaue als Pumpspeicherkraftwerk? JF - Energiewirtschaftliche Tagesfragen - et : Zeitschrift für Energiewirtschaft, Recht, Technik und Umwelt N2 - Der Anteil fluktuierender erneuerbarer Energien im deutschen Strommix steigt. Um die Netzstabilität zu erhalten, Fluktuationen im Dargebot nach Wetterlage und saisonal auszugleichen sind absehbar ab ca. 2030 große Stromspeicherkapazitäten erforderlich. Wasser-Pumpspeicherwerke sind derzeit die einzige langjährig erprobte Technologie, die künftig in Braunkohletagebauen, welche im Zuge der Energiewende aufgegeben werden, errichtet werden könnten. Eine Überschlagsrechnung am Beispiel eines Pumpspeicherwerks in verschiedenen Tagebauen zeigt, dass diese mit bis zu 400 GWh ein signifikantes technisches Speicherpotenzial haben. KW - Braunkohle KW - Energiewende KW - erneuerbare Energie KW - Pumpspeicherwerk KW - Speicherkapazität KW - Tagebau Y1 - 2019 VL - 69 IS - 4 SP - 38 EP - 39 PB - ETV Energieverl. CY - Essen ER - TY - INPR A1 - Kaul, Anja A1 - Böllmann, Andrea A1 - Thema, Martin A1 - Kalb, Larissa A1 - Stöckl, Richard A1 - Huber, Harald A1 - Sterner, Michael A1 - Bellack, Annett T1 - Identification of Robust Thermophilic Methanogenic Archaea and Packing Material for High Liquid Hold-Up at Low Volumetric Gas Flow Rates for Use in Trickle-Bed Reactors for Biological Methanation T2 - SSRN Electronic Journal N2 - he hydrogen gas-to-liquid mass transfer is the limiting factor in biological methanation. In a trickle-bed reactor, mass transfer can be increased by high flow velocities in the liquid phase, by adding a packing material with high liquid hold-up, or by choosing methanogenic archaea with a high methane productivity. This study analyzed various packings and methanogenic strains from a hydrodynamic and microbial perspective. By analyzing twelve pure cultures of thermophilic methanogens for their ability to produce high quality methane and to form biofilms on different packings, strains of Methanothermobacter were found to perform better than thus of the genus Methanothermococcus. Best methane production and adherence was observed on DuraTop®, Bioflow 9, and filter foam. DuraTop® and Bioflow 9 had also a high dynamic liquid hold-up, but the maximum hold-up was determined for expanded clay. The ideal combination for use in the ORBIT-trickle-bed reactor was identified as Methanothermobacter thermoautotrophicus IM5 and DuraTop®. KW - Liquid hold-up maximization KW - Methane production KW - Methanothermobacter KW - Methanothermococcus KW - Optimized packing-organism combination Y1 - 2021 U6 - https://doi.org/10.2139/ssrn.3940878 N1 - final peer reviewed article published under: https://doi.org/10.1016/j.biortech.2021.126524 ER -