TY - INPR A1 - Gärtner, Sebastian A1 - Marx-Schubach, Thomas A1 - Gaderer, Matthias A1 - Schmitz, Gerhard A1 - Sterner, Michael T1 - Introduction of an Innovative Energy Concept for low Emission Glass Melting based on Carbon Capture and Usage N2 - Due to the very high fossil energy demand, the glass industry is looking for innovative approaches for the reduction of CO2 emissions and the integration of renewable energy sources. In this paper, we present a novel power-to-gas concept, which has no impact on established melting processes and discuss it for this purpose. A special focus is set on the required CO2 capture from typical flue gases in the glass industry, as this process has not been investigated in detail yet. We used a process simulation approach to investigate post-combustion CO2 capture by absorption processes, followed by a techno-economic evaluation. Our investigations found the designed CO2 capture plant to be approx. 400 times smaller than absorption based CO2 separation processes for conventional power plants. Due to the many options for waste heat utilization, the waste heat required for CO2 desorption can be generated in a particularly efficient and cost-effective way. The resulting CO2 avoidance costs range between 41-42 €/t CO2, depending on waste heat utilization for desorption, and thus offer a cost effective way of CO2 removal from glass industry melting processes. These costs are well below the values of 50-65 €/t CO2 described so far for comparable industrial applications. In addition, we describe optimization options, like solvent and process improvements, to enable further cost reductions. These results motivate further research and development on the overall process presented in this work. KW - glass KW - Oxyfuel KW - Methanation KW - Power-to-Gas KW - CO2 capture KW - Economic Analysis Y1 - 2022 U6 - https://doi.org/10.31224/2642 ER - TY - CHAP A1 - Sterner, Michael A1 - Stadler, Ingo T1 - Energiespeicher im Wandel der Zeit T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Energiespeicher Y1 - 2017 SN - 978-3-662-48893-5 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_1 SP - 3 EP - 24 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER - TY - JOUR A1 - Thema, Martin A1 - Weidlich, Tobias A1 - Hörl, Manuel A1 - Bellack, Annett A1 - Mörs, Friedemann A1 - Hackl, Florian A1 - Kohlmayer, Matthias A1 - Gleich, Jasmin A1 - Stabenau, Carsten A1 - Trabold, Thomas A1 - Neubert, Michael A1 - Ortloff, Felix A1 - Brotsack, Raimund A1 - Schmack, Doris A1 - Huber, Harald A1 - Hafenbradl, Doris A1 - Karl, Jürgen A1 - Sterner, Michael T1 - Biological CO2-Methanation: An Approach to Standardization JF - Energies N2 - Power-to-Methane as one part of Power-to-Gas has been recognized globally as one of the key elements for the transition towards a sustainable energy system. While plants that produce methane catalytically have been in operation for a long time, biological methanation has just reached industrial pilot scale and near-term commercial application. The growing importance of the biological method is reflected by an increasing number of scientific articles describing novel approaches to improve this technology. However, these studies are difficult to compare because they lack a coherent nomenclature. In this article, we present a comprehensive set of parameters allowing the characterization and comparison of various biological methanation processes. To identify relevant parameters needed for a proper description of this technology, we summarized existing literature and defined system boundaries for Power-to-Methane process steps. On this basis, we derive system parameters providing information on the methanation system, its performance, the biology and cost aspects. As a result, three different standards are provided as a blueprint matrix for use in academia and industry applicable to both, biological and catalytic methanation. Hence, this review attempts to set the standards for a comprehensive description of biological and chemical methanation processes. KW - Biological methanation KW - bubble column reactor KW - CO2-methanation KW - CSTR KW - membrane reactor KW - methanation KW - Power-to-Gas KW - Power-to-Methane KW - standardization KW - Trickle-bed reactor Y1 - 2019 U6 - https://doi.org/10.3390/en12091670 N1 - Corresponding author: Martin Thema VL - 12 IS - 9 SP - 1 EP - 32 PB - MDPI ER - TY - JOUR A1 - Kaul, Anja A1 - Boellmann, Andrea A1 - Thema, Martin A1 - Kalb, Larissa A1 - Stoeckl, Richard A1 - Huber, Harald A1 - Sterner, Michael A1 - Bellack, Annett T1 - Combining a robust thermophilic methanogen and packing material with high liquid hold-up to optimize biological methanation in trickle-bed reactors JF - Bioresource technology N2 - The hydrogen gas-to-liquid mass transfer is the limiting factor in biological methanation. In trickle-bed reactors, mass transfer can be increased by high flow velocities in the liquid phase, by adding a packing material with high liquid hold-up or by using methanogenic archaea with a high methane productivity. This study developed a polyphasic approach to address all methods at once. Various methanogenic strains and packings were investigated from a microbial and hydrodynamic perspective. Analyzing the ability to produce high-quality methane and to form biofilms, pure cultures of Methanothermobacter performed better than those of the genus Methanothermococcus. Liquid and static hold-up of a packing material and its capability to facilitate attachment was not attributable to a single property. Consequently, it is recommended to carefully match organism and packing for optimized performance of trickle-bed reactors. The ideal combination for the ORBIT system was identified as Methanothermobacter thermoautotrophicus IM5 and DuraTop (R). KW - BIOCATALYTIC METHANATION KW - CARBON-DIOXIDE KW - hydrogen KW - Liquid hold-up maximization KW - MASS-TRANSFER KW - Methane production KW - Methanothermobacter KW - Methanothermococcus KW - Optimized packing-organism combination KW - THERMOAUTOTROPHICUS Y1 - 2022 U6 - https://doi.org/10.1016/j.biortech.2021.126524 VL - 345 PB - Elsevier ER - TY - INPR A1 - Kaul, Anja A1 - Böllmann, Andrea A1 - Thema, Martin A1 - Kalb, Larissa A1 - Stöckl, Richard A1 - Huber, Harald A1 - Sterner, Michael A1 - Bellack, Annett T1 - Identification of Robust Thermophilic Methanogenic Archaea and Packing Material for High Liquid Hold-Up at Low Volumetric Gas Flow Rates for Use in Trickle-Bed Reactors for Biological Methanation T2 - SSRN Electronic Journal N2 - he hydrogen gas-to-liquid mass transfer is the limiting factor in biological methanation. In a trickle-bed reactor, mass transfer can be increased by high flow velocities in the liquid phase, by adding a packing material with high liquid hold-up, or by choosing methanogenic archaea with a high methane productivity. This study analyzed various packings and methanogenic strains from a hydrodynamic and microbial perspective. By analyzing twelve pure cultures of thermophilic methanogens for their ability to produce high quality methane and to form biofilms on different packings, strains of Methanothermobacter were found to perform better than thus of the genus Methanothermococcus. Best methane production and adherence was observed on DuraTop®, Bioflow 9, and filter foam. DuraTop® and Bioflow 9 had also a high dynamic liquid hold-up, but the maximum hold-up was determined for expanded clay. The ideal combination for use in the ORBIT-trickle-bed reactor was identified as Methanothermobacter thermoautotrophicus IM5 and DuraTop®. KW - Liquid hold-up maximization KW - Methane production KW - Methanothermobacter KW - Methanothermococcus KW - Optimized packing-organism combination Y1 - 2021 U6 - https://doi.org/10.2139/ssrn.3940878 N1 - final peer reviewed article published under: https://doi.org/10.1016/j.biortech.2021.126524 ER - TY - CHAP A1 - Sterner, Michael ED - Sterner, Michael ED - Stadler, Ingo T1 - Energy Storage Through the Ages T2 - Handbook of Energy Storage N2 - Human beings have relied on stored energy since time immemorial. The planet’s first mechanism for storing energy arose two billion years ago. Photosynthesis captures solar energy in chemical bonds; it is a process on which all life depends. With the discovery of fire around one-and-a-half million years ago, early man learned to access this stored energy by burning wood. Only since the Industrial Revolution have humans used fossil fuels, which are the results of biomass produced millions of years ago, then subjected to geological processes. Today, the long-term objective is to utilize sustainable biomass storage, replicate it by technical means, and to develop new storage technologies. This chapter is about the history of energy storage as it pertains to the carbon cycle. It begins with a natural energy storage system—photosynthesis—and examines its products biomass, peat, and fossil fuels before turning to storage technology in the era of renewable energies. It will also discuss how stored energy is used. This chapter focuses on natural biogenic and fossil energy storage. Other chapters are devoted to artificial storage technologies, including batteries, pumped-storage, and power-to-gas (PtG). Each begins with a short history of its respective technology. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_1 SP - 3 EP - 22 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Thema, Martin A1 - Weidlich, Tobias A1 - Kaul, Anja A1 - Böllmann, Andrea A1 - Huber, Harald A1 - Bellack, Annett A1 - Karl, Jürgen A1 - Sterner, Michael T1 - Optimized biological CO2-methanation with a pure culture of thermophilic methanogenic archaea in a trickle-bed reactor JF - Bioresource Technology N2 - In this study, a fully automated process converting hydrogen and carbon dioxide to methane in a high temperature trickle-bed reactor was developed from lab scale to field test level. The reactor design and system performance was optimized to yield high methane content in the product gas for direct feed-in to the gas grid. The reaction was catalyzed by a pure culture of Methanothermobacter thermoautotrophicus IM5, which formed a biofilm on ceramic packing elements. During 600 h in continuous and semi-continuous operation in countercurrent flow, the 0.05 m3 reactor produced up to 95.3 % of methane at a methane production rate of 0.35 mCH43mR-3h-1. Adding nitrogen as carrier gas during startup, foam control and dosing of ammonium and sodium sulfide as nitrogen and sulfur source were important factors for process automation. KW - Biological methanation KW - Power-to-Gas KW - Reactor concept KW - Thermophilic archaea KW - Trickle-bed reactor Y1 - 2021 U6 - https://doi.org/10.1016/j.biortech.2021.125135 IS - 333 PB - Elsevier ER - TY - CHAP A1 - Stadler, Ingo A1 - Eckert, Fabian ED - Sterner, Michael ED - Stadler, Ingo T1 - Load Management as an Energy Storage System T2 - Handbook of Energy Storage N2 - Chapters 6 to 9 focused on storage systems that store electric energy in a range of forms, and then release the energy again as electric energy. Chapter 10 discussed the use of thermal-energy storage (TES) systems for thermal management. This chapter examines management methods. These methods use processes that typically convert electric energy into another form of final energy that can also be stored. This form of energy is often thermal energy. But unlike with the systems discussed in previous chapters, here the energy stored is not converted back into electricity. Instead, the energy is used and stored in the same form. From the point of view of the energy supply system, these management methods perform exactly the same function as energy storage systems. This chapter discusses load-management in general, then potential uses of load-management, and finally, current trends. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_11 SP - 611 EP - 636 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Mühlbauer, Andreas A1 - Keiner, Dominik A1 - Gerhards, Christoph A1 - Caldera, Upeksha A1 - Sterner, Michael A1 - Breyer, Christian T1 - Assessment of technologies and economics for carbon dioxide removal from a portfolio perspective JF - International Journal of Greenhouse Gas Control N2 - Carbon dioxide removal (CDR) is essential to achieve ambitious climate goals limiting global warming to less than 1.5◦C, and likely for achieving the 1.5◦C target. This study addresses the need for diverse CDR portfolios and introduces the LUT-CDR tool, which assesses CDR technology portfolios aligned with hypothetical societal preferences. Six scenarios are described, considering global deployment limitations, techno-economic factors, area requirements, technology readiness, and storage security for various CDR options. The results suggest the feasibility of large-scale CDR, potentially removing 500–1750 GtCO2 by 2100 to meet the set climate targets. For a 1.0◦C climate goal, CDR portfolios necessitate 12.0–37.5% more primary energy compared to a scenario without CDR. Remarkably, funding a 1.0◦C target requires only 0.42–0.65% of the projected global gross domestic product. Bioenergy carbon capture and sequestration and rainfall-based afforestation play limited roles, while secure sequestration of captured CO2 via direct air capture, electricity-based carbon sequestration, and desalination-based afforestation emerge as more promising options. The study offers crucial techno-economic parameters for implementing CDR options in future energy-industry-CDR system analyses and demonstrates the tool’s flexibility through alternative assumptions. It also discusses limitations, sensitivities, potential tradeoffs, and outlines options for future research in the area of large-scale CDR. Y1 - 2025 U6 - https://doi.org/10.1016/j.ijggc.2024.104297 VL - 141 PB - Elsevier ER - TY - JOUR A1 - Trost, Tobias A1 - Sterner, Michael A1 - Bruckner, Thomas T1 - Impact of electric vehicles and synthetic gaseous fuels on final energy consumption and carbon dioxide emissions in Germany based on long-term vehicle fleet modelling JF - Energy N2 - Based on a prospective scenario analysis, possible vehicle fleet developments for the individual motor car traffic (vehicle categories N1 and M1) are investigated for Germany in order to determine the long-term vehicle fleet structure, final energy demand, and related carbon dioxide emissions until the year 2050. In this framework, a vehicle fleet model was developed which combines a bottom-up consumer demand model with a dynamic stock-flow approach. Special emphasis is thereby given to different electric power-trains and synthetic gaseous fuels based on the power-to-gas technology. In detail, two different main scenarios are developed and, in addition, the impact of different carbon dioxide taxation levels of fossil fuels on the vehicle fleet structure are analysed. The scenario results reveal a broad range of possible future vehicle fleet structures. In the short to medium timeframe, the internal combustion engine dominates the fleet as a result of efficiency improvements and an increased use of natural gas as automotive fuel. The development of electric power-trains is initially marked by hybrid vehicles, whereas battery electric vehicles dominate the fleet structure in the long-term. Under favourable conditions, also synthetic gaseous fuels are competitive which can reduce carbon dioxide emissions even further. KW - Carbon dioxide emissions KW - Electric vehicles KW - Final energy consumption KW - Power-to-gas KW - Total cost of ownership KW - Vehicle fleet modelling Y1 - 2017 U6 - https://doi.org/10.1016/j.energy.2017.10.006 SN - 0360-5442 VL - 141 SP - 1215 EP - 1225 PB - Elsevier ER -