TY - CHAP A1 - Haumer, Anton T1 - Modeling and Control Design of an Educational Magnetic Levitation System T2 - Proceedings of the 15th International Modelica Conference 2023, Aachen, October 9-11 N2 - A magnetic levitation system is a perfect educational example of a nonlinear unstable system. Only with suitable control, a small permanent magnet can be held floating stable below a coil. After modeling and simulation of the system, control of the system can be developed. At the end, the control algorithm can be coded on a microcontroller, connected to a pilot plant. KW - mechatronics KW - magnetic levitation KW - time-discrete control KW - functional mockup interface Y1 - 2023 U6 - https://doi.org/10.3384/ecp204763 SN - 1650-3686 PB - Linköping University Electronic Press ER - TY - JOUR A1 - Gärtner, Sebastian A1 - Rank, Daniel A1 - Heberl, Michael A1 - Gaderer, Matthias A1 - Dawoud, Belal A1 - Haumer, Anton A1 - Sterner, Michael T1 - Simulation and Techno-Economic Analysis of a Power-to-Hydrogen Process for Oxyfuel Glass Melting JF - Energies N2 - As an energy-intensive industry sector, the glass industry is strongly affected by the increasingly stringent climate protection targets. As established combustion-based production systems ensure high process stability and glass quality, an immediate switch to low greenhouse gas emission processes is difficult. To approach these challenges, this work investigates a step-by-step integration of a Power-to-Hydrogen concept into established oxyfuel glass melting processes using a simulation approach. This is complemented by a case study for economic analysis on a selected German glass industry site by simulating the power production of a nearby renewable energy park and subsequent optimization of the power-to-hydrogen plant performance and capacities. The results of this study indicate, that the proposed system can reduce specific carbon dioxide emissions by up to 60%, while increasing specific energy demand by a maximum of 25%. Investigations of the impact of altered combustion and furnace properties like adiabatic flame temperature (+25 °C), temperature efficiency (∆ξ = −0.003) and heat capacity flow ratio (∆zHL = −0.009) indicate that pure hydrogen-oxygen combustion has less impact on melting properties than assumed so far. Within the case study, high CO2 abatement costs of 295 €/t CO2-eq. were determined. This is mainly due to the insufficient performance of renewable energy sources. The correlations between process scaling and economic parameters presented in this study show promising potential for further economic optimization of the proposed energy system in the future. KW - Power-to-Gas KW - Hydrogen KW - Electrolysis KW - Oxyfuel KW - Glass Industry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-22713 N1 - Corresponding author: Sebastian Gärtner VL - 14 IS - 24 PB - MDPI ER - TY - CHAP A1 - Brkic, Jovan A1 - Ceran, Muaz A1 - Elmoghazy, Mohamed A1 - Kavlak, Ramazan A1 - Haumer, Anton A1 - Kral, Christian T1 - Open Source PhotoVoltaics Library for Systemic Investigations T2 - Proceedings of the 13th International Modelica Conference, March 4-6, 2019, Regensburg, Germany N2 - For the planning of photovoltaic power plants standard software tools are used. Most of these software tools use statistical solar data to determine the overall energy harvest of a photovoltaic plant over one year. The calculations rely on stationary location and ideal boundary conditions, e.g., constant ambient temperature. Even though, for example, shadowing may be considered by standard software, the investigation of untypical configurations and problems cannot be performed by such software, as most configurations cannot be changed by the user. The presented PhotoVoltaics library was developed with the intention to provide a flexible framework for standard and non-standard problems. Particularly, the PhotoVoltaics library can be coupled with other Modelica libraries to perform systemic investigations. An application library, PhotoVoltaics_TGM, is provided as add-on, where measured data of two photovoltaic pants of the TGM in Vienna can be compared with simulation results. This add-on library serves as validation of the PhotoVoltaics library. KW - CELL KW - converter KW - data sheet KW - irradiance KW - maximum power tracking KW - module KW - Photovoltaics KW - plant KW - terrestrial solar model Y1 - 2019 U6 - https://doi.org/10.3384/ecp1915741 SP - 41 EP - 50 PB - Linköing University Electronic Press ER - TY - CHAP A1 - Alexander, Grimm A1 - Haumer, Anton T1 - Parametrization Of A Simplified Physical Battery Model T2 - Proceedings of the 13th International Modelica Conference, March 4-6, 2019, Regensburg, Germany N2 - The importance of batteries is increasing, especially in the field of the high power requirement systems like electric driven vehicles. Mobile energy storage makes it possible to accelerate with incredible torque, without any accruing air pollution. Due to the high costs of real components, it is of great use to simulate battery driven systems before building them. Transient processes within a cell are highly dependent on the operating point of the complete system, which makes it difficult to create equations and model arameterizations. This paper shows which data is important for cell modeling and how to parameterize simplified physical cell models. KW - battery parameterization KW - physical battery model KW - simplified battery model Y1 - 2019 U6 - https://doi.org/10.3384/ecp19157215 SP - 215 EP - 220 PB - Linköing University Electronic Press ER - TY - CHAP A1 - Grimm, Alexander A1 - Haumer, Anton T1 - EMOTH The EMobility Library of OTH Regensburg T2 - Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017 N2 - The importance of E-Mobility is rapidly increasing, not only for private vehicle traffic but also for public transport. In and around Regensburg, Germany there are a lot of automotive companies. Therefore E-Mobility is an important topic in the curriculum of several courses of study at the East-Bavarian Technical University of Applied Sciences Regensburg (OTH). One Master of Applied Research student at OTH has chosen the topic to develop an open-source simulation tool for electric vehicles – the EMOTH Library – based on Modelica and to refine several aspects of the library during the one and a half year of the master course. After one semester, the basic version of the library is available and will be presented in this paper. Y1 - 2017 U6 - https://doi.org/10.3384/ecp17132285 SP - 285 EP - 290 PB - Linköping University Electronic Press ER - TY - CHAP A1 - Haumer, Anton A1 - Kral, Christian T1 - Enhancements of Electric Machine Models: The EMachines Library T2 - Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015 N2 - Transient models of multi phase electric machines are already implemented in the Modelica Standard Library (MSL). However, advanced effects like saturation and skin effect are not taken into account. As an extension to the MSL models, the new EMachines library is presented. This package will be released as a supplemental library to the commercial EDrives library. The particular focus of this paper is on the deep bar effect of induction machines. A comparison of simulation results demonstrates the influence of the skin effect on the operational behavior of the machines. At the end of this publication further developments of the EMachines library will be outlined. KW - multi phase electric machines KW - induction machines KW - squirrel cage KW - deep bar effect KW - skin effect Y1 - 2015 U6 - https://doi.org/10.3384/ecp15118509 VL - 118 SP - 509 EP - 515 PB - Linköping University Electronic Press ER - TY - CHAP A1 - Eberhart, Philip A1 - Chung, Tek Shan A1 - Haumer, Anton A1 - Kral, Christian T1 - Open Source Library for the Simulation of Wind Power Plants T2 - Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015 N2 - This paper presents the new open source Modelica libraryWindPowerPlants. For the economic assessment of either a wind power plant or an entire wind park, the accurate prediction of the energy output is essential. Such prediction is usually performed by means of calculations based on statistical wind data. The proposed WindPowerPlants library is capable of assessing the energy output both for statistical and real wind data based on time domain simulations. In the presented version of the library wind turbine models are modeled with pitch control. The generator models have variable speed and an optional connector to the mains. The entire library is based on power balance conditions and losses are fully neglected. Yet, the library can be extended towards more detailed models considering different types of losses. The structure and components of the library are presented. Simulations examples are shown and compared with reference data. The applicability of the proposed WindPowerPlants library is demonstrated and possible enhancements are discussed. KW - variable speed KW - pitch control KW - Wind power pants KW - energy KW - statistical wind data KW - power Y1 - 2015 U6 - https://doi.org/10.3384/ecp15118929 SP - 929 EP - 936 CY - Linköping ER - TY - JOUR A1 - Kral, Christian A1 - Haumer, Anton A1 - Lee, Sang Bin T1 - A Practical Thermal Model for the Estimation of Permanent Magnet and Stator Winding Temperatures JF - IEEE Transactions on Power Electronics N2 - A thermal model for the determination of the temperatures of interior permanent magnets and stator windings is presented in this paper. The innovation of the model relies on one temperature sensor being located in the stator core of the machine. Such sensor is simple to implement in many applications such as traction or EV, where reliability is critical. The estimated stator winding and permanent magnet temperatures are determined by a simplified thermal lumped element network model with only two time constants. It is shown that the proposed thermal model is very robust due to the structure of the model and the measured stator core temperature. The distortion of the temperature estimates caused by the cooling circuit is inherently accounted for such that the model can be used for robust online prediction of temperatures. Experimental results based on a forced water-cooled interior permanent magnet synchronous machine setup are presented to validate the effectiveness of the presented model. KW - cooling KW - lumped element thermal equivalent circuit model KW - magnetic cores KW - permanent magnet machines KW - permanent magnet synchronous machine KW - stators KW - synchronous machines KW - temperature estimation KW - variable speed KW - dynamic load Y1 - 2014 U6 - https://doi.org/10.1109/TPEL.2013.2253128 SN - 1941-0107 SN - 0885-8993 VL - 29 IS - 1 SP - 455 EP - 464 PB - IEEE ER - TY - CHAP A1 - Kral, Christian A1 - Haumer, Anton A1 - Wöhrnschimmel, Reinhard T1 - Extension of the FundamentalWave Library towards Multi Phase Electric Machine Models T2 - Proceedings of the 10th International Modelica Conference, March 10-12, 2014, Lund, Sweden N2 - Abstract Electric machine theory and electric machine simulations models are often limited to three phases. Up to the Modelica Standard Libray (MSL) version 3.2 the provided machine models were limited to three phases. Particularly for large industrial drives and for redundancy reasons in electric vehicles and aircrafts multi phase electric machines are demanded. In the MSL 3.2.1 an extension of the existing FundamentalWave library has been performed to cope with phase numbers greater than or equal to three. The developed machine models are fully incorporating the multi phase electric; magnetic; rotational and thermal domain. In this publication the theoretical background of the machines models; Modelica implementation details; the parametrization of the models and simulation examples are presented. KW - electric Machine models KW - induction machine KW - Modelica Standard Library KW - multi phase KW - synchronous machine KW - synchronous reluctance machine Y1 - 2014 SN - 978-91-7519-380-9 U6 - https://doi.org/10.3384/ecp14096135 SN - 1650-3686 SN - 1650-3740 SP - 135 EP - 143 PB - Linköping University Electronic Press ER - TY - CHAP A1 - Haumer, Anton A1 - Kral, Christian T1 - The New EDrives Library: A Modular Tool for Engineering of Electric Drives T2 - Proceedings of the 10th International Modelica Conference, March 10-12, 2014, Lund, Sweden N2 - Simulation is an indispensable tool for the engineering of systems containing electric drives. Depending on the design phase and the engineering task different levels of modeling details are required: proof of concept; investigation of energy and power consumption; design of control; etc. The new EDrives library provides three levels of abstraction for inverters: quasi static (neglecting electrical transients); averaging (neglecting switching effects) and switching – for serving different demands. The inverters can feed the machine models of the Modelica Standard Library: Modelica.Magnetic.FundamentalWave and the new Modelica.Magnetic.QuasiStatic.FundamentalWave. The EDrives library copes with arbitrary phase numbers and can be easily extended to develop new control algorithms. In this publication the structure of the library and the implemented control principles are presented. Furthermore; examples comparing the three different levels of abstraction are included. KW - control KW - Electric machines and drives KW - multi phase KW - power electronics KW - quasi static KW - switching KW - thermal behavior KW - transient Y1 - 2014 SN - 978-91-7519-380-9 U6 - https://doi.org/10.3384/ecp14096155 SN - 1650-3686 SN - 1650-3740 SP - 155 EP - 163 PB - Linköping University Electronic Press ER - TY - JOUR A1 - Haumer, Anton A1 - Kral, Christian A1 - Vukovic, Vladimir A1 - David, Alexander A1 - Hettfleisch, Christian A1 - Huzsvar, Attila T1 - A Parametrization Scheme for High Performance Thermal Models of Electric Machines using Modelica JF - IFAC Proceedings Volumes N2 - Thermal models offer great advantages for enhancement of design, protection and control of electric machines. Detailed thermal models take a great number of time constants into account and provide accurate prediction of the temperatures. However, to parameterize such models detailed geometric data are needed. Whenever such detailed information is not available, or the performance of the detailed models is not satisfying, simplified thermal models as described in this paper are advantageous. The calculation of parameters is described in detail, in order to achieve best accordance with temperatures obtained from measurements or from simulations with detailed thermal models. Thermal resistances are calculated from end temperatures of a test run with constant load (and known losses). Thermal capacitances are obtained using optimization to minimize deviation of simulated and measured temperatures during the whole test run. The thermal model of an asynchronous induction machine with squirrel cage is coupled with an electrical model of the drive. For validation, simulation results of an optimally parameterized simplified model are compared with temperatures obtained by simulation of a detailed thermal model, which in turn has been validated against measurement results, both for continuous duty S1 and intermittent duty S6 (6 minutes no-load followed by 4 minutes of 140% nominal load). The deviations are not more than 4 K which is quite satisfying. KW - Electric machines KW - Induction machines KW - Thermal models KW - Model reduction KW - Parameter identification KW - Parameter optimization Y1 - 2012 U6 - https://doi.org/10.3182/20120215-3-AT-3016.00187 SN - 1474-6670 VL - 45 IS - 2 SP - 1058 EP - 1062 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Bogomolov, Maxim A1 - Kral, Christian A1 - Haumer, Anton A1 - Lomonova, Elena T1 - Modeling of permanent magnet synchronous machine with fractional slot windings T2 - Proceedings IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society ; Ecole de Technologie Superieure de Montreal, Universite du Quebec Montreal, Canada 25 - 28 October, 2012 N2 - This paper focuses on simulation of permanent magnet synchronous machine (PMSM) with fractional-slot windings (FSW) in Modelica. Modeling of the electrical machines with object-oriented approach is shortly described, and a new Modelica library for simulation of electrical machines is introduced. The results of simulation of PMSMs with fractional slot windings are presented and explained. Special attention is paid to the higher harmonics and subharmonics produced by the winding and their influence on machine operation. KW - Concentrated KW - fractional slot KW - harmonics KW - Modelica KW - permanent magnet KW - subharmonics KW - synchronous machines KW - Torque KW - windings Y1 - 2012 SN - 978-1-4673-2421-2 SN - 978-1-4673-2419-9 SN - 978-1-4673-2420-5 U6 - https://doi.org/10.1109/IECON.2012.6388912 SN - 1553-572X SP - 1894 EP - 1899 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Haumer, Anton A1 - Kral, Christian ED - Otter, Martin ED - Zimmer, Dirk T1 - Motor Management of Permanent Magnet Synchronous Machines T2 - Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany N2 - Two state-of-the-art machine designs are mainly used in recent electric and hybrid electric vehicles: asynchronous induction machines with squirrel cage which are robust but need a current component to excite the magnetic field; and permanent magnet synchronous machines which rely on somehow more sensible parts but the magnets are able to excite a magnetic field without current. However; if speed gets high enough to reach the field weakening range; for both machine the field oriented control has to prescribe a field current sufficient to reduce the field not to exceed the voltage limits of the stator circuit. Especially for the permanent magnet synchronous machine this paper investigates whether it is possible to determine an optimal field current for every operation point to minimize either total current consumption or losses. KW - Field Oriented Control KW - Optimization of Field Current KW - permanent magnet synchronous machine Y1 - 2012 SN - 978-91-7519-826-2 U6 - https://doi.org/10.3384/ecp12076159 SN - 1650-3686 SN - 1650-3740 SP - 159 EP - 166 PB - Linköping University Electronic Press ER - TY - CHAP A1 - Kral, Christian A1 - Haumer, Anton A1 - Bogomolov, Maxim A1 - Lomonova, Elena T1 - Harmonic wave model of a permanent magnet synchronous machine for modeling partial demagnetization under short circuit conditions T2 - 2012 XXth International Conference on Electrical Machines (ICEM 2012) ; Marseille, France, 2 - 5 September 2012 N2 - This paper proposes a multi domain physical model of permanent magnet synchronous machines, considering electrical, magnetic, thermal and mechanical effects. For each component of the model, the main wave as well as lower and higher harmonic wave components of the magnetic flux and the magnetic potential difference may be considered. The permanent magnets are modeled as discrete azimuthal segments in order to consider possible partial demagnetization effects. For each magnet segment a linearized temperature dependent B-H curve is considered. The main advantage of the presented model is that time transient operational behavior of a permanent magnet synchronous machine can be considered under various electrical, magnetic, thermal and mechanical conditions. The electromagnetic condition of surface magnet machine is compared with finite element analysis. KW - demagnetization KW - harmonic analysis KW - magnetic fields KW - magnetic flux KW - magnetic potential difference KW - permanent magnet synchronous machine KW - reluctance KW - segmentation KW - temperature Y1 - 2012 SN - 978-1-4673-0142-8 U6 - https://doi.org/10.1109/ICElMach.2012.6349880 SP - 295 EP - 301 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Kral, Christian A1 - Haumer, Anton A1 - Lee, Sang Bin T1 - Robust thermal model for the estimation of rotor cage and stator winding temperatures of induction machines T2 - 2012 XXth International Conference on Electrical Machines ; Marseille, France, 02.- 05.09.2012 N2 - In this paper a new model for the estimation of the stator winding and rotor cage temperatures of induction machines is presented. This model can be used in series applications of machines operated under dynamic load conditions where stator and rotor temperature shall be monitored. The proposed model relies on a simplified lumped element thermal equivalent circuit model where the stator core temperature serves as input quantity. The great advantage of this model is that it covers ambient and cooling conditions inherently. This leads to great simplicity and robustness. The parametrization and validation of the model through experimental data is presented. Advantages, drawbacks and possible implementations are discussed. KW - asynchronous machines KW - Cooling KW - dynamic load KW - equivalent circuits KW - lumped element thermal equivalent circuit model KW - Rotors KW - squirrel cage induction machine KW - stators KW - temperature estimation Y1 - 2012 SN - 978-1-4673-0142-8 SN - 978-1-4673-0143-5 SN - 978-1-4673-0141-1 U6 - https://doi.org/10.1109/ICElMach.2012.6350127 SP - 1810 EP - 1816 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Kral, Christian A1 - Haumer, Anton A1 - Lee, Sang Bin T1 - Innovative thermal model for the estimation of permanent magnet and stator winding temperatures T2 - 2012 IEEE Energy Conversion Congress and Exposition (ECCE 2012) ; Raleigh, NC, USA 15.09.-20.09.2012 N2 - In this paper an innovative thermal model for the determination of the temperatures of the permanent magnets and stator windings is presented. This model relies on one temperature sensor located in the stator core of the machine. The estimated stator winding and permanent magnet temperatures are determined by a simplified thermal lumped element network model with only two time constants. Due to the structure of the model and the measured stator core temperature the proposed thermal model is very robust. Distortion of the cooling circuit are inherently sensed such that the model can be used for the online prediction of temperatures. Experimental results based on an interior permanent magnet synchronous machine are presented to validate the presented model. KW - Cooling KW - dynamic load KW - lumped element thermal equivalent circuit model KW - permanent magnet machines KW - permanent magnet synchronous machine KW - stators KW - synchronous machines KW - temperature estimation KW - temperature sensors KW - variable speed Y1 - 2012 SN - 978-1-4673-0803-8 SN - 978-1-4673-0802-1 SN - 978-1-4673-0801-4 U6 - https://doi.org/10.1109/ECCE.2012.6342386 SN - 2329-3721 SN - 2329-3748 SP - 2704 EP - 2711 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Bäuml, T. A1 - Haumer, Anton A1 - Kapeller, H. A1 - Starzinger, J. A1 - Farzi, P. T1 - Impact of inverter pulse inhibition on the high-voltage supply system of an electric vehicle — A simulative approach T2 - 2011 IEEE Vehicle Power and Propulsion Conference (VPPC 2011) : Powering sustainable transportation ; Chicago, Illinois, USA, 06. - 09.09.2011 N2 - This paper deals with a simulative approach for investigating the impact of inverter pulse inhibition during field weakening operation of permanent magnet synchronous machines and asynchronous induction machines. The modelling and simulation language Modelica is used to design models for the vehicle, the electric machine and the inverter in different abstraction levels. It is shown that when using a permanent magnet synchronous machine, a sudden breakdown of the field weakening current causes induction of high voltages in the stator windings. Hence, the electric system of the vehicle has to be protected against the resulting high currents. Furthermore precautions have to be taken to avoid dangerous driving conditions because of high braking torques in an inverter fault operation mode. In the case of the asynchronous induction machine an inverter pulse inhibition poses no big problem, neither for the electric system of the vehicle, nor the driver. KW - asynchronous machines KW - Connectors KW - electric vehicles KW - Inverters KW - invertors KW - Mathematical model KW - Object oriented modeling KW - permanent magnet machines KW - power engineering computing KW - Rotors KW - synchronous machines KW - Torque KW - Vehicles Y1 - 2011 SN - 978-1-61284-248-6 SN - 978-1-61284-247-9 SN - 978-1-61284-246-2 U6 - https://doi.org/10.1109/VPPC.2011.6043159 SP - 1 EP - 5 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Hong, Jongman A1 - Hyun, Doosoo A1 - Kang, Tae-june A1 - Lee, Sang Bin A1 - Kral, Christian A1 - Haumer, Anton T1 - Detection and classification of rotor demagnetization and eccentricity faults for PM synchronous motors T2 - 2011 IEEE Energy Conversion Congress and Exposition (ECCE 2011) : Energy conversion innovation for a clean energy future ; Phoenix, Arizona, USA, 17.-22.09.2011 N2 - Condition monitoring of rotor problems such as demagnetization and eccentricity in permanent magnet synchronous motors (PMSM) is essential for guaranteeing high motor performance, efficiency, and reliability. However, there are many limitations to the off-line and on-line methods currently used for PMSM rotor quality assessment. In this paper, an inverter-embedded technique for automated detection and classification of PMSM rotor faults is proposed as an alternative. The main concept is to use the inverter to perform a test whenever the motor is stopped, to detect rotor faults independent of operating conditions or load torque oscillations, which is not possible with motor current signature analysis (MCSA). The d-axis is excited with a dc+ac signal, and the variation in the inductance pattern due to the change in the degree of magnetic saturation caused by demagnetization or eccentricity is observed for fault detection. An experimental study on a 7.5kW PMSM verifies that demagnetization and eccentricity can be detected and classified independent of the load with high sensitivity. KW - AC Machine KW - Condition Monitoring KW - d-axis Inductance KW - Demagnetization KW - Eccentricity KW - fault diagnosis KW - invertors KW - Magnetic Saturation KW - Permanent Magnet (PM) KW - permanent magnet motors KW - Synchronous Motor (SM) KW - synchronous motors Y1 - 2011 SN - 978-1-4577-0542-7 SN - 978-1-4577-0541-0 SN - 978-1-4577-0540-3 U6 - https://doi.org/10.1109/ECCE.2011.6064103 SN - 2329-3721 SN - 2329-3748 SP - 2512 EP - 2519 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Hong, Jongman A1 - Lee, Sang Bin A1 - Kral, Christian A1 - Haumer, Anton T1 - Detection of airgap eccentricity for permanent magnet synchronous motors based on the d-axis inductance T2 - 8th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics & Drives (SDEMPED), 2011 // 05. - 08.09.2011, Bologna, Italy N2 - The majority of the work performed for detecting eccentricity faults for permanent magnet synchronous motors (PMSM) focus on motor current signature analysis (MCSA), as it provides continuous on-line monitoring with existing current sensors. However, MCSA cannot be applied under nonstationary conditions and cannot distinguish faults with load torque oscillations, which are limitations for many PMSM drive applications. In this paper, it is shown that the d-axis inductance, L d , decreases with increase in the severity of eccentricity due to the change in the degree of magnetic saturation, and it is proposed as a new fault indicator. The inverter can be used to perform a standstill test automatically whenever the motor is stopped, to measure L d for eccentricity testing independent of load variations or oscillations, which is not possible with MCSA. An FE and experimental study on a 10hp PMSM verifies that eccentricity can be detected independent of the load with high sensitivity and reliability. KW - Airgap Eccentricity KW - Condition Monitoring KW - Diagnostics KW - fault location KW - inductance KW - load (electric) KW - machine testing KW - Magnetic Saturation KW - Motor Current Signature Analysis (MCSA) KW - permanent magnet motors KW - Permanent Magnet Synchronous Motor KW - synchronous motor protection Y1 - 2011 SN - 978-1-4244-9301-2 SN - 978-1-4244-9303-6 U6 - https://doi.org/10.1109/DEMPED.2011.6063651 SP - 378 EP - 384 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Haumer, Anton A1 - Kral, Christian T1 - Modeling a Mains connected PWM Converter with Voltage-Oriented Control T2 - Proceedings of the 8th International Modelica Conference, Technical Univeristy, Dresden, Germany, 20.-22.03.2011 N2 - The majority of industrial controlled induction machine drives are connected to the mains via a diode bridge. However; if reduction of harmonic currents and / or regenerative operation is desired; replacing the diode bridge by an active front-end (AFE) is required. This paper describes two models of an AFE: a power balance model disregarding switching effects; and an ideal switching model of a pulse width modulation (PWM) converter. Both models are controlled utilizing space phasors in a voltage oriented reference frame. Voltage oriented control (VOC) of the mains converter can be compared with field oriented control (FOC) of a machine converter. Design and parametrization of the main parts—synchronization with mains voltage; current controller and DC voltage controller—are described in detail. Additionally; simulation results proving the implementation and demonstrating possible investigations as well as an outlook on further enhancements are presented. KW - Active Front-End KW - PWM Converter KW - Voltage-Oriented Control Y1 - 2011 U6 - https://doi.org/10.3384/ecp11063388 SP - 388 EP - 397 PB - Linköping University Electronic Press ER -