TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Scheppach, Markus W. A1 - Probst, Andreas A1 - Shahidi, Neal A1 - Prinz, Friederike A1 - Fleischmann, Carola A1 - Römmele, Christoph A1 - Gölder, Stefan Karl A1 - Braun, Georg A1 - Rauber, David A1 - Rückert, Tobias A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Byrne, Michael F. A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm JF - Gut N2 - In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63% and 76%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training. KW - Artificial Intelligence KW - Endoscopy KW - Medical Image Computing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-54293 VL - 71 IS - 12 SP - 2388 EP - 2390 PB - BMJ CY - London ER - TY - JOUR A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Palm, Christoph A1 - Probst, Andreas A1 - Muzalyova, Anna A1 - Scheppach, Markus W. A1 - Nagl, Sandra A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Schulz, Dominik Andreas Helmut Otto A1 - Schlottmann, Jakob A1 - Prinz, Friederike A1 - Rauber, David A1 - Rückert, Tobias A1 - Matsumura, Tomoaki A1 - Fernández-Esparrach, Glòria A1 - Parsa, Nasim A1 - Byrne, Michael F. A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett’s esophagus: a tandem randomized and video trial JF - Endoscopy N2 - Background This study evaluated the effect of an artificial intelligence (AI)-based clinical decision support system on the performance and diagnostic confidence of endoscopists in their assessment of Barrett’s esophagus (BE). Methods 96 standardized endoscopy videos were assessed by 22 endoscopists with varying degrees of BE experience from 12 centers. Assessment was randomized into two video sets: group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett’s esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. Results AI had a stand-alone sensitivity, specificity, and accuracy of 92.2%, 68.9%, and 81.3%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3%, 58.1%, and 71.5%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.8% [95%CI 65.2%–74.2%] to 78.0% [95%CI 74.0%–82.0%]; specificity 67.3% [95%CI 62.5%–72.2%] to 72.7% [95%CI 68.2%–77.3%]). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. Conclusion BE nonexperts benefitted significantly from additional AI. BE experts and nonexperts remained significantly below the stand-alone performance of AI, suggesting that there may be other factors influencing endoscopists’ decisions to follow or discard AI advice. KW - Artificial Intelligence KW - Endoscopy KW - Medical Image Computing Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-72818 VL - 56 SP - 641 EP - 649 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - CHAP A1 - Middel, Luise A1 - Palm, Christoph A1 - Erdt, Marius T1 - Synthesis of Medical Images Using GANs T2 - Uncertainty for safe utilization of machine learning in medical imaging and clinical image-based procedures. First International Workshop, UNSURE 2019, and 8th International Workshop, CLIP 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019 N2 - The success of artificial intelligence in medicine is based on the need for large amounts of high quality training data. Sharing of medical image data, however, is often restricted by laws such as doctor-patient confidentiality. Although there are publicly available medical datasets, their quality and quantity are often low. Moreover, datasets are often imbalanced and only represent a fraction of the images generated in hospitals or clinics and can thus usually only be used as training data for specific problems. The introduction of generative adversarial networks (GANs) provides a mean to generate artificial images by training two convolutional networks. This paper proposes a method which uses GANs trained on medical images in order to generate a large number of artificial images that could be used to train other artificial intelligence algorithms. This work is a first step towards alleviating data privacy concerns and being able to publicly share data that still contains a substantial amount of the information in the original private data. The method has been evaluated on several public datasets and quantitative and qualitative tests showing promising results. KW - Neuronale Netze KW - Deep Learning KW - Generative adversarial networks KW - Machine Learning KW - Artificial Intelligence KW - Data privacy KW - Deep Learning KW - Bilderzeugung KW - Datenschutz Y1 - 2019 SN - 978-3-030-32688-3 U6 - https://doi.org/10.1007/978-3-030-32689-0_13 SN - 0302-9743 SP - 125 EP - 134 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Arribas, Julia A1 - Antonelli, Giulio A1 - Frazzoni, Leonardo A1 - Fuccio, Lorenzo A1 - Ebigbo, Alanna A1 - van der Sommen, Fons A1 - Ghatwary, Noha A1 - Palm, Christoph A1 - Coimbra, Miguel A1 - Renna, Francesco A1 - Bergman, Jacques J.G.H.M. A1 - Sharma, Prateek A1 - Messmann, Helmut A1 - Hassan, Cesare A1 - Dinis-Ribeiro, Mario J. T1 - Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis JF - Gut N2 - Objective: Artificial intelligence (AI) may reduce underdiagnosed or overlooked upper GI (UGI) neoplastic and preneoplastic conditions, due to subtle appearance and low disease prevalence. Only disease-specific AI performances have been reported, generating uncertainty on its clinical value. Design: We searched PubMed, Embase and Scopus until July 2020, for studies on the diagnostic performance of AI in detection and characterisation of UGI lesions. Primary outcomes were pooled diagnostic accuracy, sensitivity and specificity of AI. Secondary outcomes were pooled positive (PPV) and negative (NPV) predictive values. We calculated pooled proportion rates (%), designed summary receiving operating characteristic curves with respective area under the curves (AUCs) and performed metaregression and sensitivity analysis. Results: Overall, 19 studies on detection of oesophageal squamous cell neoplasia (ESCN) or Barrett's esophagus-related neoplasia (BERN) or gastric adenocarcinoma (GCA) were included with 218, 445, 453 patients and 7976, 2340, 13 562 images, respectively. AI-sensitivity/specificity/PPV/NPV/positive likelihood ratio/negative likelihood ratio for UGI neoplasia detection were 90% (CI 85% to 94%)/89% (CI 85% to 92%)/87% (CI 83% to 91%)/91% (CI 87% to 94%)/8.2 (CI 5.7 to 11.7)/0.111 (CI 0.071 to 0.175), respectively, with an overall AUC of 0.95 (CI 0.93 to 0.97). No difference in AI performance across ESCN, BERN and GCA was found, AUC being 0.94 (CI 0.52 to 0.99), 0.96 (CI 0.95 to 0.98), 0.93 (CI 0.83 to 0.99), respectively. Overall, study quality was low, with high risk of selection bias. No significant publication bias was found. Conclusion: We found a high overall AI accuracy for the diagnosis of any neoplastic lesion of the UGI tract that was independent of the underlying condition. This may be expected to substantially reduce the miss rate of precancerous lesions and early cancer when implemented in clinical practice. KW - Artificial Intelligence Y1 - 2021 U6 - https://doi.org/10.1136/gutjnl-2020-321922 VL - 70 IS - 8 SP - 1458 EP - 1468 PB - BMJ CY - London ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Rückert, Tobias A1 - Schuster, Laurin A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - Mende, Matthias A1 - Steinbrück, Ingo A1 - Faiss, Siegbert A1 - Rauber, David A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Deprez, Pierre A1 - Oyama, Tsuneo A1 - Takahashi, Akiko A1 - Seewald, Stefan A1 - Sharma, Prateek A1 - Byrne, Michael F. A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Endoscopic prediction of submucosal invasion in Barrett’s cancer with the use of Artificial Intelligence: A pilot Study JF - Endoscopy N2 - Background and aims: The accurate differentiation between T1a and T1b Barrett’s cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an Artificial Intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett’s cancer white-light images. Methods: Endoscopic images from three tertiary care centres in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross-validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) was evaluated with the AI-system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett’s cancer. Results: The sensitivity, specificity, F1 and accuracy of the AI-system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.73 and 0.71, respectively. There was no statistically significant difference between the performance of the AI-system and that of human experts with sensitivity, specificity, F1 and accuracy of 0.63, 0.78, 0.67 and 0.70 respectively. Conclusion: This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett’s cancer. AI scored equal to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and in a real-life setting. Nevertheless, the correct prediction of submucosal invasion in Barret´s cancer remains challenging for both experts and AI. KW - Maschinelles Lernen KW - Neuronales Netz KW - Speiseröhrenkrebs KW - Diagnose KW - Artificial Intelligence KW - Machine learning KW - Adenocarcinoma KW - Barrett’s cancer KW - submucosal invasion Y1 - 2021 U6 - https://doi.org/10.1055/a-1311-8570 VL - 53 IS - 09 SP - 878 EP - 883 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Römmele, Christoph A1 - Mendel, Robert A1 - Barrett, Caroline A1 - Kiesl, Hans A1 - Rauber, David A1 - Rückert, Tobias A1 - Kraus, Lisa A1 - Heinkele, Jakob A1 - Dhillon, Christine A1 - Grosser, Bianca A1 - Prinz, Friederike A1 - Wanzl, Julia A1 - Fleischmann, Carola A1 - Nagl, Sandra A1 - Schnoy, Elisabeth A1 - Schlottmann, Jakob A1 - Dellon, Evan S. A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Ebigbo, Alanna T1 - An artificial intelligence algorithm is highly accurate for detecting endoscopic features of eosinophilic esophagitis JF - Scientific Reports N2 - The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for detecting and quantifying the endoscopic features of EoE in white light images, supplemented by the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained to differentiate between EoE and normal esophagus using endoscopic white light images extracted from the database of the University Hospital Augsburg. In addition to binary classification, a second algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill (UNC), and compared with the performance of human endoscopists with varying levels of experience. The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoEEREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS criteria improved the performance of the AI algorithm, which performed significantly better than endoscopists with a lower or medium experience level. KW - Artificial Intelligence KW - Smart Endoscopy KW - eosinophilic esophagitis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-46928 VL - 12 PB - Nature Portfolio CY - London ER - TY - JOUR A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Muzalyova, Anna A1 - Rauber, David A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Yip, Hon Chi A1 - Lau, Louis Ho Shing A1 - Gölder, Stefan Karl A1 - Schmidt, Arthur A1 - Kouladouros, Konstantinos A1 - Abdelhafez, Mohamed A1 - Walter, Benjamin M. A1 - Meinikheim, Michael A1 - Chiu, Philip Wai Yan A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Artificial intelligence improves submucosal vessel detection during third space endoscopy JF - Endoscopy N2 - Background and study aims: While artificial intelligence (AI) shows high potential in decision support for diagnostic gastrointestinal endoscopy, its role in therapeutic endoscopy remains unclear. Third space endoscopic procedures pose the risk of intraprocedural bleeding. Therefore, we aimed to develop an AI algorithm for intraprocedural blood vessel detection. Patients and Methods: Using a test dataset with 101 standardized video clips containing 200 predefined submucosal blood vessels, 19 endoscopists were evaluated for the vessel detection rate (VDR) and time (VDT) with and without support of an AI algorithm. Test subjects were grouped according to experience in ESD. Results: With AI support, endoscopists VDR increased from 56.4% [CI 54.1–58.6] to 72.4% [CI 70.3–74.4]. Endoscopists‘ VDT dropped from 6.7sec [CI 6.2-7.1] to 5.2sec [CI 4.8-5.7]. False positive (FP) readings appeared in 4.5% of frames and were marked significantly shorter than true positives (6.0sec [CI 5.28-6.70] vs. 0.7sec [CI 0.55-0.87]). Conclusions: AI improved the vessel detection rate and time of endoscopists during third space endoscopy. While these data need to be corroborated by clinical trials, AI may prove to be an invaluable tool for the improvement of endoscopic interventions. KW - Artificial Intelligence KW - Third Space Endoscopy Y1 - 2025 U6 - https://doi.org/10.1055/a-2534-1164 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Tziatzios, Georgios A1 - Probst, Andreas A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Real-Time Diagnosis of an Early Barrett's Carcinoma using Artificial Intelligence (AI) - Video Case Demonstration T2 - Endoscopy N2 - Introduction We present a clinical case showing the real-time detection, characterization and delineation of an early Barrett’s cancer using AI. Patients and methods A 70-year old patient with a long-segment Barrett’s esophagus (C5M7) was assessed with an AI algorithm. Results The AI system detected a 10 mm focal lesion and AI characterization predicted cancer with a probability of >90%. After ESD resection, histopathology showed mucosal adenocarcinoma (T1a (m), R0) confirming AI diagnosis. Conclusion We demonstrate the real-time AI detection, characterization and delineation of a small and early mucosal Barrett’s cancer. KW - Artificial Intelligence KW - Barrett's Carcinoma KW - Speiseröhrenkrebs KW - Künstliche Intelligenz KW - Diagnose Y1 - 2020 U6 - https://doi.org/10.1055/s-0040-1704075 VL - 52 IS - S 01 PB - Thieme ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Rauber, David A1 - Rückert, Tobias A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Real-time detection and delineation of tissue during third-space endoscopy using artificial intelligence (AI) T2 - Endoscopy N2 - Aims  AI has proven great potential in assisting endoscopists in diagnostics, however its role in therapeutic endoscopy remains unclear. Endoscopic submucosal dissection (ESD) is a technically demanding intervention with a slow learning curve and relevant risks like bleeding and perforation. Therefore, we aimed to develop an algorithm for the real-time detection and delineation of relevant structures during third-space endoscopy. Methods  5470 still images from 59 full length videos (47 ESD, 12 POEM) were annotated. 179681 additional unlabeled images were added to the training dataset. Consequently, a DeepLabv3+ neural network architecture was trained with the ECMT semi-supervised algorithm (under review elsewhere). Evaluation of vessel detection was performed on a dataset of 101 standardized video clips from 15 separate third-space endoscopy videos with 200 predefined blood vessels. Results  Internal validation yielded an overall mean Dice score of 85% (68% for blood vessels, 86% for submucosal layer, 88% for muscle layer). On the video test data, the overall vessel detection rate (VDR) was 94% (96% for ESD, 74% for POEM). The median overall vessel detection time (VDT) was 0.32 sec (0.3 sec for ESD, 0.62 sec for POEM). Conclusions  Evaluation of the developed algorithm on a video test dataset showed high VDR and quick VDT, especially for ESD. Further research will focus on a possible clinical benefit of the AI application for VDR and VDT during third-space endoscopy. KW - Speiseröhrenkrankheit KW - Künstliche Intelligenz KW - Artificial Intelligence Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1765128 VL - 55 IS - S02 SP - S53 EP - S54 PB - Thieme ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Byrne, Michael F. A1 - Messmann, Helmut A1 - Palm, Christoph T1 - Multimodal imaging for detection and segmentation of Barrett’s esophagus-related neoplasia using artificial intelligence JF - Endoscopy N2 - The early diagnosis of cancer in Barrett’s esophagus is crucial for improving the prognosis. However, identifying Barrett’s esophagus-related neoplasia (BERN) is challenging, even for experts [1]. Four-quadrant biopsies may improve the detection of neoplasia, but they can be associated with sampling errors. The application of artificial intelligence (AI) to the assessment of Barrett’s esophagus could improve the diagnosis of BERN, and this has been demonstrated in both preclinical and clinical studies [2] [3]. In this video demonstration, we show the accurate detection and delineation of BERN in two patients ([Video 1]). In part 1, the AI system detects a mucosal cancer about 20 mm in size and accurately delineates the lesion in both white-light and narrow-band imaging. In part 2, a small island of BERN with high-grade dysplasia is detected and delineated in white-light, narrow-band, and texture and color enhancement imaging. The video shows the results using a transparent overlay of the mucosal cancer in real time as well as a full segmentation preview. Additionally, the optical flow allows for the assessment of endoscope movement, something which is inversely related to the reliability of the AI prediction. We demonstrate that multimodal imaging can be applied to the AI-assisted detection and segmentation of even small focal lesions in real time. KW - Video KW - Artificial Intelligence KW - Multimodal Imaging Y1 - 2022 U6 - https://doi.org/10.1055/a-1704-7885 VL - 54 IS - 10 PB - Georg Thieme Verlag CY - Stuttgart ET - E-Video ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Scheppach, Markus W. A1 - Probst, Andreas A1 - Prinz, Friederike A1 - Schwamberger, Tanja A1 - Schlottmann, Jakob A1 - Gölder, Stefan Karl A1 - Walter, Benjamin A1 - Steinbrück, Ingo A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - INFLUENCE OF AN ARTIFICIAL INTELLIGENCE (AI) BASED DECISION SUPPORT SYSTEM (DSS) ON THE DIAGNOSTIC PERFORMANCE OF NON-EXPERTS IN BARRETT´S ESOPHAGUS RELATED NEOPLASIA (BERN) T2 - Endoscopy N2 - Aims Barrett´s esophagus related neoplasia (BERN) is difficult to detect and characterize during endoscopy, even for expert endoscopists. We aimed to assess the add-on effect of an Artificial Intelligence (AI) algorithm (Barrett-Ampel) as a decision support system (DSS) for non-expert endoscopists in the evaluation of Barrett’s esophagus (BE) and BERN. Methods Twelve videos with multimodal imaging white light (WL), narrow-band imaging (NBI), texture and color enhanced imaging (TXI) of histologically confirmed BE and BERN were assessed by expert and non-expert endoscopists. For each video, endoscopists were asked to identify the area of BERN and decide on the biopsy spot. Videos were assessed by the AI algorithm and regions of BERN were highlighted in real-time by a transparent overlay. Finally, endoscopists were shown the AI videos and asked to either confirm or change their initial decision based on the AI support. Results Barrett-Ampel correctly identified all areas of BERN, irrespective of the imaging modality (WL, NBI, TXI), but misinterpreted two inflammatory lesions (Accuracy=75%). Expert endoscopists had a similar performance (Accuracy=70,8%), while non-experts had an accuracy of 58.3%. When AI was implemented as a DSS, non-expert endoscopists improved their diagnostic accuracy to 75%. Conclusions AI may have the potential to support non-expert endoscopists in the assessment of videos of BE and BERN. Limitations of this study include the low number of videos used. Randomized clinical trials in a real-life setting should be performed to confirm these results. KW - Artificial Intelligence KW - Barrett's Esophagus KW - Speiseröhrenkrankheit KW - Künstliche Intelligenz KW - Diagnose Y1 - 2022 U6 - https://doi.org/10.1055/s-00000012 VL - 54 IS - S 01 SP - S39 PB - Thieme ER - TY - JOUR A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - ARTIFICIAL INTELLIGENCE (AI) – ASSISTED VESSEL AND TISSUE RECOGNITION IN THIRD-SPACE ENDOSCOPY JF - Endoscopy N2 - Aims Third-space endoscopy procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex interventions with elevated risk of operator-dependent adverse events, such as intra-procedural bleeding and perforation. We aimed to design an artificial intelligence clinical decision support solution (AI-CDSS, “Smart ESD”) for the detection and delineation of vessels, tissue structures, and instruments during third-space endoscopy procedures. Methods Twelve full-length third-space endoscopy videos were extracted from the Augsburg University Hospital database. 1686 frames were annotated for the following categories: Submucosal layer, blood vessels, electrosurgical knife and endoscopic instrument. A DeepLabv3+neural network with a 101-layer ResNet backbone was trained and validated internally. Finally, the ability of the AI system to detect visible vessels during ESD and POEM was determined on 24 separate video clips of 7 to 46 seconds duration and showing 33 predefined vessels. These video clips were also assessed by an expert in third-space endoscopy. Results Smart ESD showed a vessel detection rate (VDR) of 93.94%, while an average of 1.87 false positive signals were recorded per minute. VDR of the expert endoscopist was 90.1% with no false positive findings. On the internal validation data set using still images, the AI system demonstrated an Intersection over Union (IoU), mean Dice score and pixel accuracy of 63.47%, 76.18% and 86.61%, respectively. Conclusions This is the first AI-CDSS aiming to mitigate operator-dependent limitations during third-space endoscopy. Further clinical trials are underway to better understand the role of AI in such procedures. KW - Artificial Intelligence KW - Third-Space Endoscopy KW - Smart ESD Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1745037 VL - 54 IS - S01 SP - S175 PB - Thieme ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Artificial Intelligence (AI) – assisted vessel and tissue recognition during third space endoscopy (Smart ESD) T2 - Zeitschrift für Gastroenterologie N2 - Clinical setting  Third space procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex minimally invasive techniques with an elevated risk for operator-dependent adverse events such as bleeding and perforation. This risk arises from accidental dissection into the muscle layer or through submucosal blood vessels as the submucosal cutting plane within the expanding resection site is not always apparent. Deep learning algorithms have shown considerable potential for the detection and characterization of gastrointestinal lesions. So-called AI – clinical decision support solutions (AI-CDSS) are commercially available for polyp detection during colonoscopy. Until now, these computer programs have concentrated on diagnostics whereas an AI-CDSS for interventional endoscopy has not yet been introduced. We aimed to develop an AI-CDSS („Smart ESD“) for real-time intra-procedural detection and delineation of blood vessels, tissue structures and endoscopic instruments during third-space endoscopic procedures. Characteristics of Smart ESD  An AI-CDSS was invented that delineates blood vessels, tissue structures and endoscopic instruments during third-space endoscopy in real-time. The output can be displayed by an overlay over the endoscopic image with different modes of visualization, such as a color-coded semitransparent area overlay, or border tracing (demonstration video). Hereby the optimal layer for dissection can be visualized, which is close above or directly at the muscle layer, depending on the applied technique (ESD or POEM). Furthermore, relevant blood vessels (thickness> 1mm) are delineated. Spatial proximity between the electrosurgical knife and a blood vessel triggers a warning signal. By this guidance system, inadvertent dissection through blood vessels could be averted. Technical specifications  A DeepLabv3+ neural network architecture with KSAC and a 101-layer ResNeSt backbone was used for the development of Smart ESD. It was trained and validated with 2565 annotated still images from 27 full length third-space endoscopic videos. The annotation classes were blood vessel, submucosal layer, muscle layer, electrosurgical knife and endoscopic instrument shaft. A test on a separate data set yielded an intersection over union (IoU) of 68%, a Dice Score of 80% and a pixel accuracy of 87%, demonstrating a high overlap between expert and AI segmentation. Further experiments on standardized video clips showed a mean vessel detection rate (VDR) of 85% with values of 92%, 70% and 95% for POEM, rectal ESD and esophageal ESD respectively. False positive measurements occurred 0.75 times per minute. 7 out of 9 vessels which caused intraprocedural bleeding were caught by the algorithm, as well as both vessels which required hemostasis via hemostatic forceps. Future perspectives  Smart ESD performed well for vessel and tissue detection and delineation on still images, as well as on video clips. During a live demonstration in the endoscopy suite, clinical applicability of the innovation was examined. The lag time for processing of the live endoscopic image was too short to be visually detectable for the interventionist. Even though the algorithm could not be applied during actual dissection by the interventionist, Smart ESD appeared readily deployable during visual assessment by ESD experts. Therefore, we plan to conduct a clinical trial in order to obtain CE-certification of the algorithm. This new technology may improve procedural safety and speed, as well as training of modern minimally invasive endoscopic resection techniques. KW - Artificial Intelligence KW - Medical Image Computing KW - Endoscopy KW - Bildgebendes Verfahren KW - Medizin KW - Künstliche Intelligenz KW - Endoskopie Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1755110 VL - 60 IS - 08 PB - Georg Thieme Verlag CY - Stuttgart ER -