TY - JOUR A1 - Blümel, Christina A1 - Sachs, Marius A1 - Laumer, Tobias A1 - Winzer, Bettina A1 - Schmidt, Jochen A1 - Schmidt, Michael A1 - Peukert, Wolfgang A1 - Wirth, Karl-Ernst T1 - Increasing flowability and bulk density of PE-HD powders by a dry particle coating process and impact on LBM processes JF - Rapid Prototyping Journal N2 - Purpose – The purpose of this paper is to demonstrate the processability of cohesive PE-HD particles in laser beam melting processes (LBM) of polymers. Furthermore, we present a characterization method for polymer particles, which can predict the quality of the powder deposition via LBM processes. Design/methodology/approach – This study focuses on the application of dry particle coating processes to increase flowability and bulk density of PE-HD particles. Both has been measured and afterwards validated via powder deposition of PE-HD particles in a LBM machine. Findings – For efficient coating in a dry particle coating process, the PE-HD particles and the attached nanoparticles need to show similar surface chemistry, i.e. both need to behave either hydrophobic or hydrophilic. It is demonstrated that dry particle coating is appropriate to enhance flowability and bulk density of PE-HD particles and hence considerably improves LBM processes and the resulting product quality. Originality/value – At present, in LBM processes mainly polyamide (PA), 12 particles are used, which are so far quite expensive in comparison to, for example, PE-HD particles. This work provides a unique and versatile method for nanoparticulate surface modification which may be applied to a wide variety of materials. After the coating, the particles are applicable for the LBM process. Our results provide a correlation between flowability and bulk density and the resulting product quality. KW - Polymers KW - Bulk density KW - Dry particle coating KW - Flowability KW - Hydrophilic KW - Hydrophobic Y1 - 2015 U6 - https://doi.org/10.1108/RPJ-07-2013-0074 SN - 1758-7670 SN - 1355-2546 VL - 21 IS - 6 SP - 697 EP - 704 PB - Emerald ER -