TY - JOUR A1 - Bernal, Susan A. A1 - Dhandapani, Yuvaraj A1 - Elakneswaran, Yogarajah A1 - Gluth, Gregor J. G. A1 - Gruyaert, Elke A1 - Juenger, Maria C. G. A1 - Lothenbach, Barbara A1 - Olonade, Kolawole Adisa A1 - Sakoparnig, Marlene A1 - Shi, Zhenguo A1 - Thiel, Charlotte A1 - van den Heede, Philip A1 - Vanoutrive, Hanne A1 - Von Greve-Dierfeld, Stefanie A1 - De Belie, Nele A1 - Provis, John L. T1 - Report of RILEM TC 281-CCC: A critical review of the standardised testing methods to determine carbonation resistance of concrete JF - Materials and Structures N2 - The chemical reaction between CO2 and a blended Portland cement concrete, referred to as carbonation, can lead to reduced performance, particularly when concrete is exposed to elevated levels of CO2 (i.e., accelerated carbonation conditions). When slight changes in concrete mix designs or testing conditions are adopted, conflicting carbonation results are often reported. The RILEM TC 281-CCC ‘Carbonation of Concrete with Supplementary Cementitious Materials’ has conducted a critical analysis of the standardised testing methodologies that are currently applied to determine carbonation resistance of concrete in different regions. There are at least 17 different standards or recommendations being actively used for this purpose, with significant differences in sample curing, pre-conditioning, carbonation exposure conditions, and methods used for determination of carbonation depth after exposure. These differences strongly influence the carbonation depths recorded and the carbonation coefficient values calculated. Considering the importance of accurately determining carbonation potential of concrete, not just for predicting their durability performance, but also for determining the amount of CO2 that concrete can re-absorb during or after its service life, it is imperative to recognise the applicability and limitations of the results obtained from different tests. This will enable researchers and practitioners to adopt the most appropriate testing methodologies to evaluate carbonation resistance, depending on the purpose of the conclusions derived from such testing (e. g. materials selection, service life prediction, CO2 capture potential). Y1 - 2024 U6 - https://doi.org/10.1617/s11527-024-02424-9 SN - 0025-5432 SN - 1359-5997 VL - 57 IS - 8 PB - Springer ER - TY - JOUR A1 - Von Greve-Dierfeld, Stefanie A1 - Lothenbach, Barbara A1 - Vollpracht, Anya A1 - Wu, Bei A1 - Huet, Bruno A1 - Andrade, Carmen A1 - Medina, César A1 - Thiel, Charlotte A1 - Gruyaert, Elke A1 - Vanoutrive, Hanne A1 - Del Saéz Bosque, Isabel F. A1 - Ignjatovic, Ivan A1 - Elsen, Jan A1 - Provis, John L. A1 - Scrivener, Karen A1 - Thienel, Karl-Christian A1 - Sideris, Kosmas A1 - Zajac, Maciej A1 - Alderete, Natalia A1 - Cizer, Özlem A1 - Van den Heede, Philip A1 - Hooton, Robert Douglas A1 - Kamali-Bernard, Siham A1 - Bernal, Susan A. A1 - Zhao, Zengfeng A1 - Shi, Zhenguo A1 - De Belie, Nele T1 - Understanding the carbonation of concrete with supplementary cementitious materials BT - a critical review by RILEM TC 281-CCC JF - Materials and Structures N2 - Blended cements, where Portland cement clinker is partially replaced by supplementary cementitious materials (SCMs), provide the most feasible route for reducing carbon dioxide emissions associated with concrete production. However, lowering the clinker content can lead to an increasing risk of neutralisation of the concrete pore solution and potential reinforcement corrosion due to carbonation. carbonation of concrete with SCMs differs from carbonation of concrete solely based on Portland cement (PC). This is a consequence of the differences in the hydrate phase assemblage and pore solution chemistry, as well as the pore structure and transport properties, when varying the binder composition, age and curing conditions of the concretes. The carbonation mechanism and kinetics also depend on the saturation degree of the concrete and CO2 partial pressure which in turn depends on exposure conditions (e.g. relative humidity, volume, and duration of water in contact with the concrete surface and temperature conditions). This in turn influence the microstructural changes identified upon carbonation. This literature review, prepared by members of RILEM technical committee 281-CCC carbonation of concrete with supplementary cementitious materials, working groups 1 and 2, elucidates the effect of numerous SCM characteristics, exposure environments and curing conditions on the carbonation mechanism, kinetics and structural alterations in cementitious systems containing SCMs. KW - Transport properties KW - Environmental impact KW - Aggregate KW - Supplementary cementitious materials KW - Carbonations Y1 - 2020 U6 - https://doi.org/10.1617/s11527-020-01558-w VL - 53 SP - 1 EP - 34 PB - Springer Nature ER -