TY - JOUR A1 - Koder, Alexander A1 - Schwanzer, Peter A1 - Zacherl, Florian A1 - Rabl, Hans-Peter A1 - Mayer, Wolfgang A1 - Gruber, Georg A1 - Dotzer, Thomas T1 - Combustion and emission characteristics of a 2.2L common-rail diesel engine fueled with jatropha oil, soybean oil, and diesel fuel at various EGR-rates JF - Fuel N2 - To investigate the combustion and emission behavior of straight vegetable oils (SVO), jatropha oil, soybean oil, and diesel fuel were tested. For this research, a 2.2L common-rail engine with a two-stage turbocharging concept was equipped with a cylinder pressure indication system, an exhaust-gas analyzer, an AVL Micro Soot sensor and a Scanning Mobility Particle Sizer 3936 (SMPS) device to detect the particle-size-distribution (PSD). At a low and mid-load engine-operating point (EOP), the thermodynamic and emissions were investigated under various exhaust gas recirculation (EGR) rates with respect to the PSD. Moreover, the injection behavior of the three test fuels was analyzed separately using an injection rate analyzer. This procedure facilitates the thermodynamic investigations of the engine process and allows the calculation of the hydraulic delay (HD) as well as the ignition delay (ID). The ID of the SVO fuels compared to diesel fuel was found to be lower at all engine-operating modes, while jatropha oil always showed the shortest ID. In the particulate-nitrogen oxide (NOX) trade-off, the SVO fuels showed higher particulate matter (PM) emissions at the low-load EOP, whereas the PM emissions of diesel fuel overtop the SVO fuels at a higher engine load. With increased EGR-rates, a rise in the particle size was observed for all fuels. At the low-load EOP, the SVO fuels showed larger particles for high EGR-rates. This effect also changed by increasing the engine-load to the mid-load EOP, wherein the particle size of the diesel fuel emissions is higher by applying elevated EGR-rates. KW - BEHAVIOR KW - BLENDS KW - Exhaust gas recirculation KW - IGNITION KW - INJECTION KW - Jatropha oil KW - KARANJA KW - Particle-size-distribution KW - PERFORMANCE KW - RME KW - Soybean oil KW - Straight vegetable oil combustion KW - VEGETABLE-OILS Y1 - 2018 U6 - https://doi.org/10.1016/j.fuel.2018.04.147 VL - 228 IS - September SP - 23 EP - 29 PB - Elsevier ER - TY - CHAP A1 - Koder, Alexander A1 - Zacherl, Florian A1 - Rabl, Hans-Peter A1 - Mayer, Wolfgang A1 - Gruber, Georg A1 - Dotzer, Thomas T1 - Jatropha Oil as an Alternative Fuel for Modern Diesel Engines - Injection Characteristics and EGR-Compatibility T2 - WCX 17: SAE World Congress 2017 N2 - An effective way to reduce greenhouse gas emissions (GHGs) is to use rurally produced straight jatropha oil as a substitute for diesel fuel. However, the different physical and chemical properties of straight vegetable oils (SVOs) require a customized setup of the combustion engine, particularly of the injection timing and quantity. Therefore, this study demonstrates the differences in the injection and combustion processes of jatropha oil compared to diesel fuel, particularly in terms of its compatibility with exhaust gas recirculation (EGR). A 2.2 l common-rail diesel engine with a two-stage turbocharging concept was used for testing. To examine the differences in injection rate shaping of diesel fuel and jatropha oil, the injector was tested with an injection rate analyzer using both the fuels. To investigate the combustion process, the engine was mounted at an engine test bench and equipped with a cylinder pressure indication system. All limited emissions, as well as fuel consumption, were measured. Various injection strategies, boost and rail pressure levels were tested at different EGR rates in terms of their impact on the combustion process. EGR in particular offers a great potential in the case of jatropha oil combustion due to its oxygen content. In addition, the investigation of injection rate shaping in combination with cylinder pressure analysis allowed a detailed thermodynamic evaluation of the combustion process. Ignition delay (ID) was also analyzed using a new method to calculate the start of combustion (SOC) Y1 - 2017 U6 - https://doi.org/10.4271/2017-01-5000 PB - SAE International ER - TY - JOUR A1 - Zacherl, Florian A1 - Wopper, Christoph A1 - Schwanzer, Peter A1 - Rabl, Hans-Peter T1 - Potential of the Synthetic Fuel Oxymethylene Ether (OME) for the Usage in a Single-Cylinder Non-Road Diesel Engine: Thermodynamics and Emissions JF - Energies N2 - Non-road sectors, such as agriculture and construction machinery, require high energy densities and flexibility in use, which is why diesel engines are mainly used. The use of climate-neutral fuels, produced from renewable energies, such as Oxymethylene Ether (OME) as a diesel substitute, can significantly reduce CO2 and pollutant emissions in these sectors. In addition to CO2 neutrality, OME also offers improved combustion characteristics compared to diesel fuel, eliminating the soot–NOx trade-off and thus enabling new opportunities in engine design and calibration. In this paper, the combustion of pure OME on a close-to-production, single-cylinder non-road diesel engine with a pump–line–nozzle injection system is analyzed. A variation of the center of combustion at constant power output was performed for diesel and OME at different operating points. Two injectors were investigated with OME. A study on ignition delay and a detailed thermodynamic analysis was carried out. In addition, the exhaust emissions CO, NOx, VOC, as well as particulate-matter, -number and -size distributions were measured. With OME, a significantly shorter ignition delay as well as a shortened combustion duration could be observed, despite a longer injection duration. In addition, the maximum injection pressure increases. VOC and CO emissions are reduced. Particulate matter was reduced by more than 99% and particle number (>10 nm) was reduced by multiple orders of magnitude. The median of the particle size distribution shifts from 60 to 85 nm (diesel) into a diameter range of sub 23 nm (OME). A significant reduction of NOx emissions with OME enables new degrees of freedom in engine calibration and an efficiency advantage without hardware adaption. Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-55350 N1 - Project: NAMOSYN: Nachhaltige Mobilität durch synthetische Kraftstoffe (Funding Nr. 03SF0566N0) N1 - Corresponding author: Florian Zacherl VL - 15 IS - 21 SP - 1 EP - 26 PB - MDPI ER - TY - RPRT A1 - Zacherl, Florian A1 - Wopper, Christoph A1 - Mieslinger, Johann A1 - Peis, Michael A1 - Rabl, Hans-Peter T1 - Schlussbericht zum Verbundvorhaben NAMOSYN: Nachhaltige Mobilität durch synthetische Kraftstoffe BT - Cluster FC1A: OME Für Dieselmotoren - Motorische Testung; Cluster FC2: C1-O Systeme für Ottomotoren N2 - Im Labor für Verbrennungsmotoren und Abgasnachbehandlung der OTH-Regensburg sollten im Zuge des NAMOSYN-Projektes zwei Vertreter klimaneutraler Kraftstoffe an verschiedenen Systemprüfständen (Motor-, Einspritzprüfstand, optisch zugängliche Einspritzkammer, …) und mit Hilfe von Simulationsmethoden für den Einsatz in bestehenden Verbrennungsmotoren untersucht werden. Synthetische Kraftstoffe aus der Gruppe der Oxymethylenether (OME) stellen eine CO2-neutrale Alternative zu fossilem Dieselkraftstoff dar. Für Ottomotoren wurde untersucht, ob der synthetische Kraftstoff DMC/MeFo (Dimethylcarbonat & Methylformiat) einen Ersatz für Ottokraftstoff darstellen kann, bzw. eine Drop-In-Fähigkeit gegeben ist. Die OTH Regensburg bearbeitete 2 unabhängige Teilvorhaben zur motorischen Testung von synthetischen Kraftstoffen: „FC 1A: Motorische Testung von OME“ und „FC 2: Untersuchung von C1-Oxygenaten für Ottomotoren“. Die Projektlaufzeit betrug 3,5 Jahre, inkl. kostenneutraler Verlängerung um 6 Monate aufgrund der Corona-Pandemie. Im FC1A "AP2-Nachrüstung Dieselmotoren" der OTH Regensburg lag der Fokus auf der Erforschung der Potentiale und der Umrüstung eines Einzylinder-Dieselmotors mit Pumpe-Leitung-Düse-(PLD)-Einspritzsystem des Projektpartners Motorenfabrik Hatz GmbH und Co. KG für OME-Betrieb. Im AP2.1 wurden umfangreiche Daten gesammelt und Simulationsmodelle des Motors und PLD-Einspritzsystems erstellt und mit Dieselkraftstoff und OME validiert. Nachfolgend wurden Parameterstudien zur Geometrie des Einspritzsystems und der physikalischen Eigenschaften von OME durchgeführt. In AP2.2 und AP2.3 wurden umfangreiche Untersuchungen an einem Motor- und Einspritzsystemprüfstand mit Diesel und OME durchgeführt und der Steuergerätedatensatz für den OME-Betrieb optimiert. Die Ergebnisse zeigen, dass die Umstellung des Kraftstoffs auf OME, insbesondere bei einfachen Motoren mit rudimentärer Einspritztechnik und ohne Mittel zur NOx-Reduzierung (keine AGR oder SCR), ein enormes Potenzial zur Steigerung des Wirkungsgrads bei gleichzeitiger Reduzierung aller regulierten Schadstoffe (NOx, 𝑃N, 𝑃M, CO und 𝑉OC) eröffnet. Die Ergebnisse und generierten Simulationsmodelle unterstützen eine schnelle Serienentwicklung und Einführung von OME-Umrüstlösungen. In FC 2 werden die vielversprechenden Kraftstoffe Methylformiat (MeFo) und Dimethylcarbonat (DMC) motorisch getestet. Untersuchungen am Kraftstoffsystem und wichtigen Komponenten dienen als Grundlage für das AP3. Im AP3 wird die Machbarkeit der DMC/MeFo-Verbrennung am Vollmotor demonstriert und die erwarteten Emissionsvorteile gegenüber herkömmlichen Ottokraftstoffen gezeigt. Abweichend von der ursprünglichen Planung werden an der OTH Regensburg Kraftstoffblends aus Benzin und MeFo untersucht, um den Einsatzbereich des Kraftstoffs zu erweitern. In AP5 werden potentielle Mischungsverhältnisse analysiert und die Eigenschaften der ausgewählten Kraftstoffmischungen an einem Einspritzratenprüfstand, an der Einspritzkammer und am Vollmotor untersucht. Es werden Einspritzverhalten, Gemischaufbereitung und Abgasemissionen bewertet. Zudem wird eine Kraftstoffmischanlage entwickelt und ein optischer Zugang am Vollmotor ermöglicht. Eine Ölverdünnungsmesstechnik wird eingesetzt, um den Kraftstoffeintrag ins Motoröl zu untersuchen KW - Synthetische Kraftstoffe KW - OME KW - DMC KW - MeFo KW - E-Fuels Y1 - 2023 CY - Regensburg ER -