TY - CHAP A1 - Herdl, Florian A1 - Bachmann, Michael A1 - Wohlfartsstätter, Dominik A1 - Düsberg, Felix A1 - Dudeck, Markus A1 - Eder, Magdalena A1 - Meyer, Manuel A1 - Pahlke, Andreas A1 - Edler, Simon A1 - Schels, Andreas A1 - Hansch, Walter A1 - Schreiner, Rupert A1 - Wohlfartsstatter, Dominik A1 - Dusberg, Felix T1 - A novel current dependent field emission performance test T2 - 2021 34th International Vacuum Nanoelectronics Conference (IVNC): 5-9 July 2021, Lyon, France N2 - A current dependent performance test for comparison of different field emitter arrays is introduced. Statistical analysis is enabled due to a short measurement time and as a main feature the electric field shift, comparable to the degradation of the emitter is examined. Significance of the test method is shown by a comparison of field emitter arrays with different doping levels. KW - Current measurement KW - Field emitter arrays KW - Statistical analysis KW - Systematics KW - Time measurement KW - Tools KW - Vacuum systems Y1 - 2021 U6 - https://doi.org/10.1109/IVNC52431.2021.9600695 SP - 1 EP - 2 ER - TY - JOUR A1 - Schels, Andreas A1 - Herdl, Florian A1 - Hausladen, Matthias A1 - Wohlfartsstätter, Dominik A1 - Edler, Simon A1 - Bachmann, Michael A1 - Pahlke, Andreas A1 - Schreiner, Rupert A1 - Hansch, Walter T1 - Quantitative Field Emission Imaging for Studying the Doping-Dependent Emission Behavior of Silicon Field Emitter Arrays JF - Micromachines N2 - Field emitter arrays (FEAs) are a promising component for novel vacuum micro- and nanoelectronic devices, such as microwave power amplifiers or fast-switching X-ray sources. However, the interrelated mechanisms responsible for FEA degradation and failure are not fully understood. Therefore, we present a measurement method for quantitative observation of individual emission sites during integral operation using a low-cost, commercially available CMOS imaging sensor. The emission and degradation behavior of three differently doped FEAs is investigated in current-regulated operation. The measurements reveal that the limited current of the p-doped emitters leads to an activation of up to 55% of the individual tips in the array, while the activation of the n-type FEA stopped at around 30%. This enhanced activation results in a more continuous and uniform current distribution for the p-type FEA. An analysis of the individual emitter characteristics before and after a constant current measurement provides novel perspectives on degradation behavior. A burn-in process that trims the emitting tips to an integral current-specific ideal field enhancement factor is observed. In this process, blunt tips are sharpened while sharp tips are dulled, resulting in homogenization within the FEA. The methodology is described in detail, making it easily adaptable for other groups to apply in the further development of promising FEAs. Y1 - 2023 U6 - https://doi.org/10.3390/mi14112008 VL - 14 IS - 11 PB - MDPI ER - TY - CHAP A1 - Schels, Andreas A1 - Herdl, Florian A1 - Hausladen, Matthias A1 - Wohlfartsstätter, Dominik A1 - Bachmann, Michael A1 - Edler, Simon A1 - Düsberg, Felix A1 - Pahlke, Andreas A1 - Buchner, Philipp A1 - Schreiner, Rupert A1 - Hansch, Walter T1 - Beta Factor Mapping of Individual Emitting Tips During Integral Operation of Field Emission Arrays T2 - 2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA N2 - Emission uniformity mappings of field emitter arrays provide important insight into degradation mechanisms, but are often laborious, non-integral, costly, or not quantifiable. Here, a low-cost Raspberry Pi HQ camera is used as an extraction anode to quantify the emission distribution in field emitter arrays. A verification measurement using controlled SEM electron beams proves, that current-voltage characteristics of individual emission sites can be determined by combining the integral electrical data with the image data. The characteristics are used to quantify the field enhancement factors of an 30x30 silicon field emitter array during integral operation. Comparison of the field enhancement factor distributions before and after a one-hour constant current operation at 1 µA shows an increase from 50 actively emitting tips before to 156 after the measurement. It is shown, that the distribution of field enhancement factors shifts towards lower values, due to the increasing degradation for high field enhancement tips, especially above 1500. KW - field emission KW - field emission imaging KW - field emission distribution KW - field enhancement factor KW - CMOS imaging KW - beta factor Y1 - 2023 SN - 979-8-3503-0143-4 U6 - https://doi.org/10.1109/IVNC57695.2023.10188957 SP - 224 EP - 226 PB - IEEE ER - TY - CHAP A1 - Herdl, Florian A1 - Kueddelsmann, Maximillian J. A1 - Schels, Andreas A1 - Bachmann, Michael A1 - Edler, Simon A1 - Wohlfartsstätter, Dominik A1 - Düsberg, Felix A1 - Prugger, Alexander A1 - Dillig, Michael A1 - Dams, Florian A1 - Schreiner, Rupert A1 - Coileáin, Cormac Ó. A1 - Zimmermann, Stefan A1 - Pahlke, Andreas A1 - Duesberg, Georg S. T1 - Characterization and Operation of Graphene-Oxide-Semiconductor Emitters at Atmospheric Pressure Levels T2 - 2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA N2 - In recent years Graphene-Oxide-Semiconductor (GOS) electron emitters have attracted a lot of interest due to their outstanding durability in modest vacuum conditions. However, the performance at ambient pressure remains largely unexplored. In this study GOS-emitters are characterized in nitrogen and air at atmospheric pressure, and compared with their vacuum characteristics. For this purpose, lifetime and IV-characteristics measurements are shown. Furthermore, the GOS-emitter was operated as an ionization source for ion mobility spectrometry (IMS) at ambient conditions. KW - durability KW - graphene compounds KW - ion mobility KW - semiconductor-insulator boundaries Y1 - 2023 SN - 979-8-3503-0143-4 U6 - https://doi.org/10.1109/IVNC57695.2023.10188974 SP - 14 EP - 16 PB - IEEE ER - TY - CHAP A1 - Hausladen, Matthias A1 - Schels, Andreas A1 - Buchner, Philipp A1 - Bartl, Mathias A1 - Asgharzade, Ali A1 - Edler, Simon A1 - Wohlfartsstätter, Dominik A1 - Bachmann, Michael A1 - Schreiner, Rupert T1 - Improved Method for Determining the Distribution of FEA Currents by Optical CMOS Sensors T2 - 37th International Vacuum Nanoelectronics Conference (IVNC), 15-19 July 2024, Brno, Czech Republic N2 - CMOS image sensors are utilized to determine the time- and spatially-resolved distribution of the electron emission of silicon field emission arrays. During initial experiments, rather low field emission currents already visibly damaged the sensor surface, altering the system accuracy over the measurement time. Therefore, we coated the sensor surface with copper for protection. In contrast to the original insulating surface, the Cu coating provides a conductive surface for incident electrons and improves heat dissipation in addition. This prevents localized surface charges and surface damages which stabilize the system accuracy. Y1 - 2024 U6 - https://doi.org/10.1109/IVNC63480.2024.10652543 SP - 1 EP - 2 PB - IEEE ER - TY - JOUR A1 - Hausladen, Matthias A1 - Schels, Andreas A1 - Buchner, Philipp A1 - Bartl, Mathias A1 - Asgharzade, Ali A1 - Edler, Simon A1 - Wohlfartsstätter, Dominik A1 - Bachmann, Michael A1 - Schreiner, Rupert T1 - Measurement of field emission array current distributions by metal-coated CMOS image sensors JF - Journal of Vacuum Science & Technology B N2 - A CMOS image sensor is utilized to determine the time- and spatially resolved distribution of the total electron emission current of a silicon field emission array. The sensor measures electron emission without the need for phosphorus screens or scintillators as converters. However, in initial experiments, rather low field emission currents of several hundreds of nanoamperes per emitter already damaged the sensor surface, which altered the systems’ signal response over the measurement time. In consequence, we coated the CMOS sensor surface with a Cu layer for surface protection. In contrast to the original insulating surface, Cu is an excellent current- and heat-conductor, which avoids lens charging by providing a conductive path for incident electrons and has an improved heat dissipation capability. Measurements using a segmented field emission cathode with four individually addressable tips demonstrate a consistent correlation between the emission current and the sensor signal of the metal-coated image sensor. Furthermore, the characterization of a field emission array showed that single tip emission currents of up to 12 μA per tip are measurable without discernible damage effects of the sensor’s surface. KW - Bremsstrahlung KW - Laser micromachining KW - Image sensors KW - Field emitter arrays Y1 - 2024 U6 - https://doi.org/10.1116/6.0004074 VL - 42 IS - 6 PB - AIP Publishing ER - TY - JOUR A1 - Hausladen, Matthias A1 - Schels, Andreas A1 - Asgharzade, Ali A1 - Buchner, Philipp A1 - Bartl, Mathias A1 - Wohlfartsstätter, Dominik A1 - Edler, Simon A1 - Bachmann, Michael A1 - Schreiner, Rupert T1 - Investigation of Influencing Factors on the Measurement Signal of a CMOS Image Sensor for Measuring Field Emission Currents JF - Sensors Y1 - 2025 U6 - https://doi.org/10.3390/s25051529 N1 - Corresponding author der OTH Regensburg: Matthias Hausladen VL - 25 IS - 5 PB - MDPI ER -