TY - CHAP A1 - Pangerl, Jonas A1 - Wittmann, Elisabeth A1 - Weigl, Stefan A1 - Müller, Max A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - Using a Modulated Quantum Cascade Laser for Photoacoustic Spectra Recording of Exhaled Acetone and Main Breath Components T2 - Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES) N2 - Photoacoustic spectra of main breath components together with acetone are presented demonstrating spectral linearity towards different concentrations and compositions. The acetone 3σ detection limit at 1209 cm−1 is 0.28 ppbV Y1 - 2023 U6 - https://doi.org/10.1364/AIS.2022.ATu3G.1 PB - Optica Publishing Group ER - TY - JOUR A1 - Weigl, Stefan A1 - Wittmann, Elisabeth A1 - Rück, Thomas A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - Effects of ambient parameters and cross-sensitivities from O2, CO2 and H2O on the photoacoustic detection of acetone in the UV region JF - Sensors Actuators B Chemical N2 - We present a sensitive UV LED photoacoustic setup for the detection of gaseous acetone and discuss its applicability towards breath analysis. We investigated the performance of the sensor for low acetone concentrations down to 0.1 parts per million (ppmV). The influences of temperature, flow, pressure, optical power and LED duty cycle on the measured signal have been examined. To gain a better understanding of the different effects on the photoacoustic signal, correlation analysis was applied and feature importance was determined using a large measured dataset. Furthermore, the cross-sensitivities towards O2, CO2 and H2O have been studied extensively. Finally, the sensor’s performance to detect acetone between 0.1–1 ppmV within gas mixtures simulating breath exhale conditions has been investigated, too. With a limit of detection (LoD) of 12.5 parts per billion (ppbV) (3σ) measured under typical breath exhale gas mixture conditions, the sensor demonstrated a high potential for the application of acetone detection in human breath analysis. KW - Acetone detection KW - Photoacoustic spectroscopy KW - High power UV LED KW - Cross-sensitivities KW - Acetone breath analysis Y1 - 2021 U6 - https://doi.org/10.1016/j.snb.2020.129001 SN - 0925-4005 N1 - Corresponding authors: Stefan Weigl, Elisabeth Wittmann, Thomas Rück, Rudolf Bierl, Frank-Michael Matysik N1 - Corrigendum to “Effects of ambient parameters and cross-sensitivities from O2, CO2 and H2O on the photoacoustic detection of acetone in the UV region” [Sens. Actuators B: Chem. 328 (February 2021) (2020) 129001]; https://doi.org/10.1016/j.snb.2020.129392 IS - 328 PB - Elsevier ER -