TY - JOUR A1 - Schindelhauer, Christian A1 - Volbert, Klaus A1 - Ziegler, Martin T1 - Geometric spanners with applications in wireless networks JF - Computational Geometry: Theory and Applications N2 - In this paper we investigate the relations between spanners, weak spanners, and power spanners in for any dimension and apply our results to topology control in wireless networks. For , a c-spanner is a subgraph of the complete Euclidean graph satisfying the condition that between any two vertices there exists a path of length at most c-times their Euclidean distance. Based on this ability to approximate the complete Euclidean graph, sparse spanners have found many applications, e.g., in FPTAS, geometric searching, and radio networks. In a weak c-spanner, this path may be arbitrarily long, but must remain within a disk or sphere of radius c-times the Euclidean distance between the vertices. Finally in a c-power spanner, the total energy consumed on such a path, where the energy is given by the sum of the squares of the edge lengths on this path, must be at most c-times the square of the Euclidean distance of the direct edge or communication link. While it is known that any c-spanner is also both a weak -spanner and a -power spanner for appropriate , depending only on c but not on the graph under consideration, we show that the converse is not true: there exists a family of -power spanners that are not weak C-spanners and also a family of weak -spanners that are not C-spanners for any fixed C. However a main result of this paper reveals that any weak c-spanner is also a C-power spanner for an appropriate constant C. We further generalize the latter notion by considering -power spanners where the sum of the δth powers of the lengths has to be bounded; so ()-power spanners coincide with the usual power spanners and ()-power spanners are classical spanners. Interestingly, these ()-power spanners form a strict hierarchy where the above results still hold for any some even hold for while counter-examples exist for . We show that every self-similar curve of fractal dimension is not a -power spanner for any fixed C, in general. Finally, we consider the sparsified Yao-graph (SparsY-graph or YY) that is a well-known sparse topology for wireless networks. We prove that all SparsY-graphs are weak c-spanners for a constant c and hence they allow us to approximate energy-optimal wireless networks by a constant factor. Y1 - 2007 U6 - https://doi.org/10.1016/j.comgeo.2006.02.001 VL - 36 IS - 3 SP - 197 EP - 214 ER - TY - CHAP A1 - Rührup, Stefan A1 - Schindelhauer, Christian A1 - Volbert, Klaus T1 - Performance analysis of the hierarchical layer graph for wireless networks T2 - 4th International Conference, ADHOC-NOW 2005, Cancun, Mexico, October 6-8, 2005 N2 - The Hierarchical Layer Graph (HL graph) is a promising network topology for wireless networks with variable transmission ranges. It was introduced and analyzed by Meyer auf der Heide et al. 2004. In this paper we present a distributed, localized and resource-efficient algorithm for constructing this graph. The qualtiy of the HL graph depends on the domination radius and the publication radius, which affect the amount of interference in the network. These parameters also determine whether the HL graph is a c-spanner, which implies an energy-efficient topology. We investigate the performance on randomly distributed node sets and show that the restrictions on these parameters derived from a worst case analysis are not so tight using realistic settings. Here, we present the results of our extensive experimental evaluation, measuring congestion, dilation and energy. Congestion includes the load that is induced by interfering edges. We distinguish between congestion and realistic congestion where we also take the signal-to-interference ratio into account. Our experiments show that the HL graph contains energy-efficient paths as well as paths with a few number of hops while preserving a low congestion. KW - Wireless Network KW - Transmission Range KW - Topology Control KW - Leader Election KW - Unit Disk Graph Y1 - 2005 SN - 978-3-540-29132-9 SN - 978-3-540-32086-9 U6 - https://doi.org/10.1007/11561354_21 SP - 244 EP - 257 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Lukovszki, Tamas A1 - Schindelhauer, Christian A1 - Volbert, Klaus T1 - Resource efficient maintenance of wireless network topologies JF - Journal of Universal Computer Science N2 - Multiple hop routing in mobile ad hoc networks can minimize energy consumption and increase data throughput. Yet, the problem of radio interferences remain. However if the routes are restricted to a basic network based on local neighborhoods, these interferences can be reduced such that standard routing algorithms can be applied. We compare different network topologies for these basic networks, i.e. the Yao-graph (aka. Θ-graph) and some also known related models, which will be called the SymmYgraph (aka. YS-graph), the SparsY-graph (aka. YY-graph) and the BoundY-graph. Further, we present a promising network topology called the HL-graph (based on Hierarchical Layers). We compare these topologies regarding degree, spanner-properties, and communication features. We investigate how these network topologies bound the number of (uni- and bidirectional) interferences and whether these basic networks provide energy-optimal or congestion-minimal routing. Then, we compare the ability of these topologies to handle dynamic changes of the network when radio stations appear and disappear. For this we measure the number of involved radio stations and present distributed algorithms for repairing the network structure. KW - ad hoc networks KW - topology control KW - distributed algorithms Y1 - 2006 U6 - https://doi.org/10.3217/jucs-012-09-1292 VL - 12 IS - 9 SP - 1292 EP - 1311 PB - Verlag der Technischen Universität Graz ER - TY - JOUR A1 - Beimler, Josef A1 - Leißl, Caroline A1 - Ebner, Lena A1 - Elsner, Michael A1 - Mühlbauer, Gerhard A1 - Kohlert, Dieter A1 - Schubert, Martin J. W. A1 - Weiß, Andreas P. A1 - Sterner, Michael A1 - Raith, Thomas A1 - Afranseder, Martin A1 - Krapf, Tobias A1 - Mottok, Jürgen A1 - Siemers, Christian A1 - Großmann, Benjamin A1 - Höcherl, Johannes A1 - Schlegl, Thomas A1 - Schneider, Ralph A1 - Milaev, Johannes A1 - Rampelt, Christina A1 - Roduner, Christian A1 - Glowa, Christoph A1 - Bachl, Christoph A1 - Schliekmann, Claus A1 - Gnan, Alfons A1 - Grill, Martin A1 - Ruhland, Karl A1 - Piehler, Thomas A1 - Friers, Daniel A1 - Wels, Harald A1 - Pflug, Kenny A1 - Kucera, Markus A1 - Waas, Thomas A1 - Schlachetzki, Felix A1 - Boy, Sandra A1 - Pemmerl, Josef A1 - Leis, Alexander A1 - Welsch, Andreas F.X. A1 - Graf, Franz A1 - Zenger, Gerhard A1 - Volbert, Klaus A1 - Waas, Thomas A1 - Scherzinger, Stefanie A1 - Klettke, Meike A1 - Störl, Uta A1 - Heyl, C. A1 - Boldenko, A. A1 - Monkman, Gareth J. A1 - Kujat, Richard A1 - Briem, Ulrich A1 - Hierl, Stefan A1 - Talbot, Sebastian A1 - Schmailzl, Anton A1 - Ławrowski, Robert Damian A1 - Prommesberger, Christian A1 - Langer, Christoph A1 - Dams, Florian A1 - Schreiner, Rupert A1 - Valentino, Piergiorgio A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Furgiuele, Franco A1 - Gebbeken, Norbert A1 - Eisenried, Michael A1 - Jungbauer, Bastian A1 - Hutterer, Albert A1 - Bauhuber, Michael A1 - Mikrievskij, Andreas A1 - Argauer, Monika A1 - Hummel, Helmut A1 - Lechner, Alfred A1 - Liebetruth, Thomas A1 - Schumm, Michael A1 - Joseph, Saskia A1 - Reschke, Michael A1 - Soska, Alexander A1 - Schroll-Decker, Irmgard A1 - Putzer, Michael A1 - Rasmussen, John A1 - Dendorfer, Sebastian A1 - Weber, Tim A1 - Al-Munajjed, Amir Andreas A1 - Verkerke, Gijsbertus Jacob A1 - Renkawitz, Tobias A1 - Haug, Sonja A1 - Rudolph, Clarissa A1 - Zeitler, Annika A1 - Schaubeck, Simon A1 - Steffens, Oliver A1 - Rechenauer, Christian A1 - Schulz-Brize, Thekla A1 - Fleischmann, Florian A1 - Kusterle, Wolfgang A1 - Beer, Anne A1 - Wagner, Bernd A1 - Neidhart, Thomas ED - Baier, Wolfgang T1 - Forschungsbericht 2013 T3 - Forschungsberichte der OTH Regensburg - 2013 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-7990 CY - Regensburg ER - TY - CHAP A1 - Weiß, Martin Georg A1 - Volbert, Klaus ED - Falter, Thomas T1 - Intelligente Steuerung von Industrierobotern T2 - Zweite OTH-Clusterkonferenz 18. Januar 2017 Techbase, Regensburg Y1 - 2017 CY - Regensburg ER - TY - CHAP A1 - Thelen, Simon A1 - Eder, Friedrich A1 - Melzer, Matthias A1 - Weber Nunes, Danilo A1 - Stadler, Michael A1 - Rechenauer, Christian A1 - Obergrießer, Mathias A1 - Jubeh, Ruben A1 - Volbert, Klaus A1 - Dünnweber, Jan T1 - A Slim Digital Twin For A Smart City And Its Residents T2 - SOICT '23: Proceedings of the 12th International Symposium on Information and Communication Technology, 2023, Hi Chi Minh, Vietnam N2 - In the engineering domain, representing real-world objects using a body of data, called a digital twin, which is frequently updated by “live” measurements, has shown various advantages over tradi- tional modelling and simulation techniques. Consequently, urban planners have a strong interest in digital twin technology, since it provides them with a laboratory for experimenting with data before making far-reaching decisions. Realizing these decisions involves the work of professionals in the architecture, engineering and construction (AEC) domain who nowadays collaborate via the methodology of building information modeling (BIM). At the same time, the citizen plays an integral role both in the data acquisition phase, while also being a beneficiary of the improved resource management strategies. In this paper, we present a prototype for a “digital energy twin” platform we designed in cooperation with the city of Regensburg. We show how our extensible platform de- sign can satisfy the various requirements of multiple user groups through a series of data processing solutions and visualizations, in- dicating valuable design and implementation guidelines for future projects. In particular, we focus on two example use cases concern- ing building electricity monitoring and BIM. By implementing a flexible data processing architecture we can involve citizens in the data acquisition process, meeting the demands of modern users regarding maximum transparency in the handling of their data. KW - smart city KW - AI KW - digital twin KW - artificial intelligence KW - urban planning KW - BIM KW - portal system Y1 - 2023 SN - 979-8-4007-0891-6 U6 - https://doi.org/10.1145/3628797.3628936 SP - 8 EP - 15 PB - ACM ER - TY - CHAP A1 - Schwindl, Tobias A1 - Volbert, Klaus A1 - Schwab, Maximilian ED - Benavente-Peces, César ED - Cam-Winget, Nancy ED - Fleury, Eric ED - Ahrens, Andreas T1 - On Update Protocols in Wireless Sensor Networks T2 - Sensor Networks N2 - There has been a lot of research been done in the domain of Wireless Sensor Networks in recent years. Nowadays, Wireless Sensor Networks are in operation in a wide range of different scenarios and applications, like energy management services, heat and water billing as well as smoke detectors. However, research and development will be continued in this domain. During the operation of such a network, software updates need to be done seldom. In contrast to this, software updates need to be done very frequently during development and testing for uploading a new firmware on umpteen nodes. In this paper, we examine such a software update for a particular, but popular and often used sensor network platform. There are already interesting research papers about the process of updating sensor nodes. Our specific focus relies on the technical part of such an update process. We will argue why these already existing update processes do not cover our defiances. The objective of our software update protocol is to enable the developer to update many nodes in a reliable and very fast fashion during the development and testing process. For this reason, energy consumption is considered only marginally. We do not need a multi-hop protocol, due to the fact that all devices are in range, e.g. in a laboratory. In this paper we survey well known update protocols and architectures for software updates in WSN, discuss the solutions and compare them to our approach. As a conclusion of our extensive simulation follows to sum up that the developed protocols do a fast and scalable as well as a reliable update. KW - Low-power devices KW - Software update KW - WSN Y1 - 2019 SN - 978-3-030-30109-5 U6 - https://doi.org/10.1007/978-3-030-30110-1_5 SP - 74 EP - 97 PB - Springer International Publishing CY - Cham ER - TY - JOUR A1 - Altmann, Matthias A1 - Schlegl, Peter A1 - Volbert, Klaus T1 - A low-power wireless system for energy consumption analysis at mains sockets JF - EURASIP Journal on Embedded Systems N2 - Introduction: Improving energy efficiency and reducing energy wastage is an important topic of our time. But it is quite difficult to figure out how much of our total electricity bill can be mapped to which device or at what time the device used it. We believe energy efficiency of normal households can be improved, if this kind of transparency would be available. In this article, we present a system for energy measurement at mains sockets to gain a transparent view of energy consumption for each device in a household. It consists of several smart energy measuring devices (SEMDs) that use a low-power radio protocol to dynamically build and connect to a radio network to transfer power usage date to a server. At the server, the data is stored and can be accessed via web interface. Results: Our primary goal was to build a back-end system for an energy metering platform with very low energy consumption. This platform can provide data for a variety of services that enables users (the consumers) to understand and improve their energy consumption behavior and increase overall energy efficiency of their households. KW - Low power KW - Smart grid KW - Smart home KW - Smart metering KW - Wireless system Y1 - 2017 U6 - https://doi.org/10.1186/s13639-016-0041-y N1 - Corresponding author: Peter Schlegl IS - 1 PB - Springer Nature ER - TY - CHAP A1 - Zenger, Gerhard A1 - Kenner, Susanne A1 - Volbert, Klaus A1 - Waas, Thomas A1 - Kucera, Markus T1 - Acquiring energy data from a medium-voltage grid for future smart grid solutions: A practical smart grid application example realized by use of cellular communication networks of the 2nd and 3rd generation T2 - Proceedings of the 11th Workshop on Intelligent Solutions in Embedded Systems (WISES), 10-11 Sept. 2013, Pilsen, Czech Republic N2 - In this paper we present a practical example of the use of Cellular Communication standards like GPRS and UMTS in a Smart Grid Application. For a more detailed view we demonstrate a possible implementation of Cellular Communication Technologies in a data acquisition application for the collection of energy indicators in a medium-voltage grid. Furthermore, we show a technical overview of relevant and common mobile communication standards available in Germany. The included theoretical examples, Smart Grid scenarios, presented data and results are based on a research project for intelligent power regulation in medium-voltage grids performed in Regensburg (Germany). It is a joint project' of the University of Applied Sciences Regensburg together with a local energy provider and a manufacturer for distribution network systems. KW - Mobile communication KW - Medium voltage KW - Standards KW - Smart grids KW - Feeds KW - Ground penetrating radar Y1 - 2013 UR - https://ieeexplore.ieee.org/document/6664954 SN - 978-3-00-042899-9 SP - 1 EP - 8 PB - IEEE ER - TY - JOUR A1 - Kenner, Susanne A1 - Thaler, Raphael A1 - Kucera, Markus A1 - Volbert, Klaus A1 - Waas, Thomas T1 - Comparison of Smart Grid architectures for monitoring and analyzing power grid data via Modbus and REST JF - EURASIP Journal on Embedded Systems N2 - Smart grid, smart metering, electromobility, and the regulation of the power network are keywords of the transition in energy politics. In the future, the power grid will be smart. Based on different works, this article presents a data collection, analyzing, and monitoring software for a reference smart grid. We discuss two possible architectures for collecting data from energy analyzers and analyze their performance with respect to real-time monitoring, load peak analysis, and automated regulation of the power grid. In the first architecture, we analyze the latency, needed bandwidth, and scalability for collecting data over the Modbus TCP/IP protocol and in the second one over a RESTful web service. The analysis results show that the solution with Modbus is more scalable as the one with RESTful web service. However, the performance and scalability of both architectures are sufficient for our reference smart grid and use cases. KW - smart grid KW - real-time monitoring KW - Modbus KW - HTTP performance KW - Intelligentes Stromnetz KW - Referenzmodell KW - Monitoring Y1 - 2017 U6 - https://doi.org/10.1186/s13639-016-0045-7 VL - 2017 ER -