TY - GEN A1 - Stelzer, Vera A1 - Tauwald, Sandra Melina A1 - Vielsmeier, Veronika A1 - Cieplik, Fabian A1 - Kandulski, Arne A1 - Schneider-Brachert, Wulf A1 - Wuensch, Olaf A1 - Rütten, Markus A1 - Krenkel, Lars T1 - Generation, Distribution, and Contagiousness of Surgical Smoke during Tracheotomies T2 - 23. DGLR Fach-Symposium Strömungen mit Ablösung, 09./10. November 2022, Berlin, Deutschland N2 - Surgical smoke has been a little discussed topic in the context of the current pandemic. Surgical smoke is generated during the cauterization of tissue with heat-generating devices and consists of 95% water vapor and 5% cellular debris in the form of particulate matter. In-vivo investigations are performed during tracheotomies where surgical smoke is produced during tissue electrocautery. Furthermore, in-vitro parametric studies to investigate the particle number and size distribution and the spatial distribution of surgical smoke with laser light sheet technique are conducted. The higher the power of the high-frequency-device the larger the particles in size and the higher the resulting particle counts. The images taken show the densest smoke at 40W with artificial saliva. The resulting characteristic size distribution, which may include viruses and bacterial components, confirms that the risk arising from surgical smoke should be considered. Furthermore, the experiments will provide the database for further numerical investigations. Y1 - 2022 UR - https://www.dlr.de/as/Portaldata/5/Resources/dokumente/veranstaltungen/stab_workshop/Jahresbericht2022.pdf CY - Göttingen ER - TY - CHAP A1 - Stelzer, Vera A1 - Tauwald, Sandra Melina A1 - Vielsmeier, Veronika A1 - Cieplik, Fabian A1 - Kandulski, Arne A1 - Schneider-Brachert, Wulf A1 - Wünsch, Olaf A1 - Rütten, Markus A1 - Krenkel, Lars ED - Dillman, Andreas ED - Heller, Gerd ED - Kraemer, Ewald ED - Wagner, Claus ED - Weiss, Julien T1 - Generation and Distribution of Surgical Smoke During High Frequency Electrocauterization T2 - New Results in Numerical and Experimental Fluid Mechanics XIV. STAB/DGLR Symposium 2022 N2 - Surgical Smoke is generated during the cauterization of tissue with high-frequency (HF) devices and consists of 95% water vapor and 5% cellular debris. When the coagulation tweezers, which are supplied with HF voltage by the HF device, touch tissue, the electric circuit is closed, and smoke is generated by the heat. In-vivo investigations are performed during tracheotomies where surgical smoke is produced during coagulation of tissue. Furthermore, in-vitro parametric studies to investigate the particle number and size distribution and the spatial distribution of surgical smoke with laser light sheet technique are conducted. With higher power of the HF device, the particles generated are larger in size and the total number of particles generated is also higher. Adding artificial saliva to the tissue shows even higher particle counts. The study by laser light sheet also confirms this. The resulting characteristic size distribution, which may include viruses and bacterial components, confirms considering the risk arising from surgical smoke. Furthermore, the experiments will provide the database for further numerical investigations. KW - Surgical smoke KW - Fluid Mechanics KW - Aerosols KW - Tracheotomies Y1 - 2023 SN - 978-3-031-40481-8 U6 - https://doi.org/10.1007/978-3-031-40482-5_53 SP - 559 EP - 568 PB - Springer Nature Switzerland AG CY - Cham, Switzerland ER - TY - JOUR A1 - Tauwald, Sandra Melina A1 - Michel, Johanna A1 - Brandt, Marie A1 - Vielsmeier, Veronika A1 - Stemmer, Christian A1 - Krenkel, Lars T1 - Experimental studies and mathematical modeling of the viscoelastic rheology of tracheobronchial mucus from respiratory healthy patients JF - Multidisciplinary Respiratory Medicine N2 - BACKGROUND: Tracheobronchial mucus plays a crucial role in pulmonary function by providing protection against inhaled pathogens. Due to its composition of water, mucins, and other biomolecules, it has a complex viscoelastic rheological behavior. This interplay of both viscous and elastic properties has not been fully described yet. In this study, we characterize the rheology of human mucus using oscillatory and transient tests. Based on the transient tests, we describe the material behavior of mucus under stress and strain loading by mathematical models. METHODS: Mucus samples were collected from clinically used endotracheal tubes. For rheological characterization, oscillatory amplitude-sweep and frequency-sweep tests, and transient creep-recovery and stress-relaxation tests were performed. The results of the transient test were approximated using the Burgers model, the Weibull distribution, and the six-element Maxwell model. The three-dimensional microstructure of the tracheobronchial mucus was visualized using scanning electron microscope imaging. RESULTS: Amplitude-sweep tests showed storage moduli ranging from 0.1 Pa to 10000 Pa and a median critical strain of 4 %. In frequency-sweep tests, storage and loss moduli increased with frequency, with the median of the storage modulus ranging from 10 Pa to 30 Pa, and the median of the loss modulus from 5 Pa to 14 Pa. The Burgers model approximates the viscoelastic behavior of tracheobronchial mucus during a constant load of stress appropriately (R2 of 0.99), and the Weibull distribution is suitable to predict the recovery of the sample after the removal of this stress (R2 of 0.99). The approximation of the stress-relaxation test data by a six-element Maxwell model shows a larger fit error (R2 of 0.91). CONCLUSIONS: This study provides a detailed description of all process steps of characterizing the rheology of tracheobronchial mucus, including sample collection, microstructure visualization, and rheological investigation. Based on this characterization, we provide mathematical models of the rheological behavior of tracheobronchial mucus. These can now be used to simulate mucus flow in the respiratory system through numerical approaches. KW - tracheobronchial mucus KW - rheological model KW - viscoelasticity Y1 - 2023 U6 - https://doi.org/10.4081/mrm.2023.923 SN - 2049-6958 N1 - Corresponding author: Sandra Melina Tauwald VL - 18 IS - 1 PB - PAGEPress CY - Pavia, Italy ER -