TY - CHAP A1 - Eixelberger, Thomas A1 - Wittenberg, Thomas A1 - Perret, Jerome A1 - Katzky, Uwe A1 - Simon, Martina A1 - Schmitt-Rüth, Stephanie A1 - Hofer, Mathias A1 - Sorge, M. A1 - Jacob, R. A1 - Engel, Felix B. A1 - Gostian, A. A1 - Palm, Christoph A1 - Franz, Daniela T1 - A haptic model for virtual petrosal bone milling T2 - 17. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie (CURAC2018), Tagungsband, 2018, Leipzig, 13.-15. September N2 - Virtual training of bone milling requires realtime and realistic haptics of the interaction between the ”virtual mill” and a ”virtual bone”. We propose an exponential abrasion model between a virtual one and the mill bit and combine it with a coarse representation of the virtual bone and the mill shaft for collision detection using the Bullet Physics Engine. We compare our exponential abrasion model to a widely used linear abrasion model and evaluate it quantitatively and qualitatively. The evaluation results show, that we can provide virtual milling in real-time, with an abrasion behavior similar to that proposed in the literature and with a realistic feeling of five different surgeons. KW - Osteosynthese KW - Simulation KW - Lernprogramm Y1 - 2018 UR - https://www.curac.org/images/advportfoliopro/images/CURAC2018/CURAC 2018 Tagungsband.pdf VL - 17 SP - 214 EP - 219 ER - TY - CHAP A1 - Maier, Johannes A1 - Huber, Michaela A1 - Katzky, Uwe A1 - Perret, Jerome A1 - Wittenberg, Thomas A1 - Palm, Christoph T1 - Force-Feedback-assisted Bone Drilling Simulation Based on CT Data T2 - Bildverarbeitung für die Medizin 2018; Algorithmen - Systeme - Anwendungen; Proceedings des Workshops vom 11. bis 13. März 2018 in Erlangen N2 - In order to fix a fracture using minimally invasive surgery approaches, surgeons are drilling complex and tiny bones with a 2 dimensional X-ray as single imaging modality in the operating room. Our novel haptic force-feedback and visual assisted training system will potentially help hand surgeons to learn the drilling procedure in a realistic visual environment. Within the simulation, the collision detection as well as the interaction between virtual drill, bone voxels and surfaces are important. In this work, the chai3d collision detection and force calculation algorithms are combined with a physics engine to simulate the bone drilling process. The chosen Bullet-Physics-Engine provides a stable simulation of rigid bodies, if the collision model of the drill and the tool holder is generated as a compound shape. Three haptic points are added to the K-wire tip for removing single voxels from the bone. For the drilling process three modes are proposed to emulate the different phases of drilling in restricting the movement of a haptic device. KW - Handchirurgie KW - Osteosynthese KW - Simulation KW - Lernprogramm Y1 - 2018 U6 - https://doi.org/10.1007/978-3-662-56537-7_78 SP - 291 EP - 296 PB - Springer CY - Berlin ER - TY - CHAP A1 - Maier, Johannes A1 - Haug, Sonja A1 - Huber, Michaela A1 - Katzky, Uwe A1 - Neumann, Sabine A1 - Perret, Jérôme A1 - Prinzen, Martin A1 - Weber, Karsten A1 - Wittenberg, Thomas A1 - Wöhl, Rebecca A1 - Scorna, Ulrike A1 - Palm, Christoph T1 - Development of a haptic and visual assisted training simulation concept for complex bone drilling in minimally invasive hand surgery T2 - CARS Conference, 5.10.-7.10.2017 Y1 - 2017 ER -