TY - CHAP A1 - Schönberger, Manuel A1 - Trummer, Immanuel A1 - Mauerer, Wolfgang T1 - Quantum Optimisation of General Join Trees T2 - Joint Workshops at 49th International Conference on Very Large Data Bases (VLDBW’23) — International Workshop on Quantum Data Science and Management (QDSM’23), August 28 - September 1, 2023, Vancouver, Canada (CEUR Workshop Proceedings) N2 - Recent advances in the manufacture of quantum computers attract much attention over a wide range of fields, as early-stage quantum processing units (QPU) have become accessible. While contemporary quantum machines are very limited in size and capabilities, mature QPUs are speculated to eventually excel at optimisation problems. This makes them an attractive technology for database problems, many of which are based on complex optimisation problems with large solution spaces. Yet, the use of quantum approaches on database problems remains largely unexplored. In this paper, we address the long-standing join ordering problem, one of the most extensively researched database problems. Rather than running arbitrary code, QPUs require specific mathematical problem encodings. An encoding for the join ordering problem was recently proposed, allowing first small-scale queries to be optimised on quantum hardware. However, it is based on a faithful transformation of a mixed integer linear programming (MILP) formulation for JO, and inherits all limitations of the MILP method. Most strikingly, the existing encoding only considers a solution space with left-deep join trees, which tend to yield larger costs than general, bushy join trees. We propose a novel QUBO encoding for the join ordering problem. Rather than transforming existing formulations, we construct a native encoding tailored to quantum systems, which allows us to process general bushy join trees. This makes the full potential of QPUs available for solving join order optimisation problems. Y1 - 2023 UR - https://ceur-ws.org/Vol-3462/QDSM2.pdf SP - 1 EP - 12 PB - RWTH Aachen, Sun SITE Central Europe CY - Aachen ER - TY - INPR A1 - Schönberger, Manuel A1 - Trummer, Immanuel A1 - Mauerer, Wolfgang T1 - Quantum-Inspired Digital Annealing for Join Ordering T2 - Proceedings of the VLDB Endowment N2 - Finding the optimal join order (JO) is one of the most important problems in query optimisation, and has been extensively considered in research and practise. As it involves huge search spaces, approximation approaches and heuristics are commonly used, which explore a reduced solution space at the cost of solution quality. To explore even large JO search spaces, we may consider special-purpose software, such as mixed-integer linear programming (MILP) solvers, which have successfully solved JO problems. However, even mature solvers cannot overcome the limitations of conventional hardware prompted by the end of Moore’s law. We consider quantum-inspired digital annealing hardware, which takes inspiration from quantum processing units (QPUs). Unlike QPUs, which likely remain limited in size and reliability in the near and mid-term future, the digital annealer (DA) can solve large instances of mathematically encoded optimisation problems today. We derive a novel, native encoding for the JO problem tailored to this class of machines that substantially improves over known MILP and quantum-based encodings, and reduces encoding size over the state-of-the-art. By augmenting the computation with a novel readout method, we derive valid join orders for each solution obtained by the (probabilistically operating) DA. Most importantly and despite an extremely large solution space, our approach scales to practically relevant dimensions of around 50 relations and improves result quality over conventionally employed approaches, adding a novel alternative to solving the long-standing JO problem. Y1 - 2023 ER -