TY - JOUR A1 - Rueckert, Tobias A1 - Rauber, David A1 - Maerkl, Raphaela A1 - Klausmann, Leonard A1 - Yildiran, Suemeyye R. A1 - Gutbrod, Max A1 - Nunes, Danilo Weber A1 - Moreno, Alvaro Fernandez A1 - Luengo, Imanol A1 - Stoyanov, Danail A1 - Toussaint, Nicolas A1 - Cho, Enki A1 - Kim, Hyeon Bae A1 - Choo, Oh Sung A1 - Kim, Ka Young A1 - Kim, Seong Tae A1 - Arantes, Gonçalo A1 - Song, Kehan A1 - Zhu, Jianjun A1 - Xiong, Junchen A1 - Lin, Tingyi A1 - Kikuchi, Shunsuke A1 - Matsuzaki, Hiroki A1 - Kouno, Atsushi A1 - Manesco, João Renato Ribeiro A1 - Papa, João Paulo A1 - Choi, Tae-Min A1 - Jeong, Tae Kyeong A1 - Park, Juyoun A1 - Alabi, Oluwatosin A1 - Wei, Meng A1 - Vercauteren, Tom A1 - Wu, Runzhi A1 - Xu, Mengya A1 - Wang, An A1 - Bai, Long A1 - Ren, Hongliang A1 - Yamlahi, Amine A1 - Hennighausen, Jakob A1 - Maier-Hein, Lena A1 - Kondo, Satoshi A1 - Kasai, Satoshi A1 - Hirasawa, Kousuke A1 - Yang, Shu A1 - Wang, Yihui A1 - Chen, Hao A1 - Rodríguez, Santiago A1 - Aparicio, Nicolás A1 - Manrique, Leonardo A1 - Palm, Christoph A1 - Wilhelm, Dirk A1 - Feussner, Hubertus A1 - Rueckert, Daniel A1 - Speidel, Stefanie A1 - Nasirihaghighi, Sahar A1 - Al Khalil, Yasmina A1 - Li, Yiping A1 - Arbeláez, Pablo A1 - Ayobi, Nicolás A1 - Hosie, Olivia A1 - Lyons, Juan Camilo T1 - Comparative validation of surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation in endoscopy: Results of the PhaKIR 2024 challenge JF - Medical Image Analysis N2 - Reliable recognition and localization of surgical instruments in endoscopic video recordings are foundational for a wide range of applications in computer- and robot-assisted minimally invasive surgery (RAMIS), including surgical training, skill assessment, and autonomous assistance. However, robust performance under real-world conditions remains a significant challenge. Incorporating surgical context – such as the current procedural phase – has emerged as a promising strategy to improve robustness and interpretability. To address these challenges, we organized the Surgical Procedure Phase, Keypoint, and Instrument Recognition (PhaKIR) sub-challenge as part of the Endoscopic Vision (EndoVis) challenge at MICCAI 2024. We introduced a novel, multi-center dataset comprising thirteen full-length laparoscopic cholecystectomy videos collected from three distinct medical institutions, with unified annotations for three interrelated tasks: surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation. Unlike existing datasets, ours enables joint investigation of instrument localization and procedural context within the same data while supporting the integration of temporal information across entire procedures. We report results and findings in accordance with the BIAS guidelines for biomedical image analysis challenges. The PhaKIR sub-challenge advances the field by providing a unique benchmark for developing temporally aware, context-driven methods in RAMIS and offers a high-quality resource to support future research in surgical scene understanding. KW - Surgical phase recognition KW - Instrument keypoint estimation KW - Instrument instance segmentation KW - Robot-assisted surgery Y1 - 2026 U6 - https://doi.org/10.1016/j.media.2026.103945 SN - 1361-8415 N1 - Corresponding author der OTH Regensburg: Tobias Rueckert Die Preprint-Version ist ebenfalls in diesem Repositorium verzeichnet unter: https://opus4.kobv.de/opus4-oth-regensburg/solrsearch/index/search/start/0/rows/10/sortfield/score/sortorder/desc/searchtype/simple/query/2507.16559 VL - 109 PB - Elsevier ER - TY - GEN A1 - Rueckert, Tobias A1 - Rauber, David A1 - Klausmann, Leonard A1 - Gutbrod, Max A1 - Rueckert, Daniel A1 - Feussner, Hubertus A1 - Wilhelm, Dirk A1 - Palm, Christoph T1 - PhaKIR Dataset - Surgical Procedure Phase, Keypoint, and Instrument Recognition [Data set] N2 - Note: A script for extracting the individual frames from the video files while preserving the challenge-compliant directory structure and frame-to-mask naming conventions is available on GitHub and can be accessed here: https://github.com/remic-othr/PhaKIR_Dataset. The dataset is described in the following publications: Rueckert, Tobias et al.: Comparative validation of surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation in endoscopy: Results of the PhaKIR 2024 challenge. arXiv preprint, https://arxiv.org/abs/2507.16559. 2025. Rueckert, Tobias et al.: Video Dataset for Surgical Phase, Keypoint, and Instrument Recognition in Laparoscopic Surgery (PhaKIR). arXiv preprint, https://arxiv.org/abs/2511.06549. 2025. The proposed dataset was used as the training dataset in the PhaKIR challenge (https://phakir.re-mic.de/) as part of EndoVis-2024 at MICCAI 2024 and consists of eight real-world videos of human cholecystectomies ranging from 23 to 60 minutes in duration. The procedures were performed by experienced physicians, and the videos were recorded in three hospitals. In addition to existing datasets, our annotations provide pixel-wise instance segmentation masks of surgical instruments for a total of 19 categories, coordinates of relevant instrument keypoints (instrument tip(s), shaft-tip transition, shaft), both at an interval of one frame per second, and specifications regarding the intervention phases for a total of eight different phase categories for each individual frame in one dataset and thus comprehensively cover instrument localization and the context of the operation. Furthermore, the provision of the complete video sequences offers the opportunity to include the temporal information regarding the respective tasks and thus further optimize the resulting methods and outcomes. Y1 - 2025 U6 - https://doi.org/10.5281/zenodo.15740620 ER - TY - JOUR A1 - Maerkl, Raphaela A1 - Rueckert, Tobias A1 - Rauber, David A1 - Gutbrod, Max A1 - Weber Nunes, Danilo A1 - Palm, Christoph T1 - Enhancing generalization in zero-shot multi-label endoscopic instrument classification JF - International Journal of Computer Assisted Radiology and Surgery N2 - Purpose Recognizing previously unseen classes with neural networks is a significant challenge due to their limited generalization capabilities. This issue is particularly critical in safety-critical domains such as medical applications, where accurate classification is essential for reliability and patient safety. Zero-shot learning methods address this challenge by utilizing additional semantic data, with their performance relying heavily on the quality of the generated embeddings. Methods This work investigates the use of full descriptive sentences, generated by a Sentence-BERT model, as class representations, compared to simpler category-based word embeddings derived from a BERT model. Additionally, the impact of z-score normalization as a post-processing step on these embeddings is explored. The proposed approach is evaluated on a multi-label generalized zero-shot learning task, focusing on the recognition of surgical instruments in endoscopic images from minimally invasive cholecystectomies. Results The results demonstrate that combining sentence embeddings and z-score normalization significantly improves model performance. For unseen classes, the AUROC improves from 43.9% to 64.9%, and the multi-label accuracy from 26.1% to 79.5%. Overall performance measured across both seen and unseen classes improves from 49.3% to 64.9% in AUROC and from 37.3% to 65.1% in multi-label accuracy, highlighting the effectiveness of our approach. Conclusion These findings demonstrate that sentence embeddings and z-score normalization can substantially enhance the generalization performance of zero-shot learning models. However, as the study is based on a single dataset, future work should validate the method across diverse datasets and application domains to establish its robustness and broader applicability. KW - Generalized zero-shot learning KW - Sentence embeddings KW - Z-score normalization KW - Multi-label classification KW - Surgical instruments Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-85674 N1 - Corresponding author der OTH Regensburg: Raphaela Maerkl VL - 20 SP - 1577 EP - 1587 PB - Springer Nature ER - TY - CHAP A1 - Klausmann, Leonard A1 - Rueckert, Tobias A1 - Rauber, David A1 - Maerkl, Raphaela A1 - Yildiran, Suemeyye R. A1 - Gutbrod, Max A1 - Palm, Christoph T1 - DIY challenge blueprint: from organization to technical realization in biomedical image analysis T2 - Medical Image Computing and Computer Assisted Intervention - MICCAI 2025 ; Proceedings Part XI N2 - Biomedical image analysis challenges have become the de facto standard for publishing new datasets and benchmarking different state-of-the-art algorithms. Most challenges use commercial cloud-based platforms, which can limit custom options and involve disadvantages such as reduced data control and increased costs for extended functionalities. In contrast, Do-It-Yourself (DIY) approaches have the capability to emphasize reliability, compliance, and custom features, providing a solid basis for low-cost, custom designs in self-hosted systems. Our approach emphasizes cost efficiency, improved data sovereignty, and strong compliance with regulatory frameworks, such as the GDPR. This paper presents a blueprint for DIY biomedical imaging challenges, designed to provide institutions with greater autonomy over their challenge infrastructure. Our approach comprehensively addresses both organizational and technical dimensions, including key user roles, data management strategies, and secure, efficient workflows. Key technical contributions include a modular, containerized infrastructure based on Docker, integration of open-source identity management, and automated solution evaluation workflows. Practical deployment guidelines are provided to facilitate implementation and operational stability. The feasibility and adaptability of the proposed framework are demonstrated through the MICCAI 2024 PhaKIR challenge with multiple international teams submitting and validating their solutions through our self-hosted platform. This work can be used as a baseline for future self-hosted DIY implementations and our results encourage further studies in the area of biomedical image analysis challenges. KW - Biomedical challenges KW - Image analysis KW - Blueprint KW - Do-It-Yourself KW - Self-hosting Y1 - 2025 SN - 978-3-032-05141-7 U6 - https://doi.org/10.1007/978-3-032-05141-7_9 SP - 85 EP - 95 PB - Springer CY - Cham ER -