TY - INPR A1 - Rueckert, Tobias A1 - Rueckert, Daniel A1 - Palm, Christoph T1 - Methods and datasets for segmentation of minimally invasive surgical instruments in endoscopic images and videos: A review of the state of the art N2 - In the field of computer- and robot-assisted minimally invasive surgery, enormous progress has been made in recent years based on the recognition of surgical instruments in endoscopic images. Especially the determination of the position and type of the instruments is of great interest here. Current work involves both spatial and temporal information with the idea, that the prediction of movement of surgical tools over time may improve the quality of final segmentations. The provision of publicly available datasets has recently encouraged the development of new methods, mainly based on deep learning. In this review, we identify datasets used for method development and evaluation, as well as quantify their frequency of use in the literature. We further present an overview of the current state of research regarding the segmentation and tracking of minimally invasive surgical instruments in endoscopic images. The paper focuses on methods that work purely visually without attached markers of any kind on the instruments, taking into account both single-frame segmentation approaches as well as those involving temporal information. A discussion of the reviewed literature is provided, highlighting existing shortcomings and emphasizing available potential for future developments. The publications considered were identified through the platforms Google Scholar, Web of Science, and PubMed. The search terms used were "instrument segmentation", "instrument tracking", "surgical tool segmentation", and "surgical tool tracking" and result in 408 articles published between 2015 and 2022 from which 109 were included using systematic selection criteria. Y1 - 2023 U6 - https://doi.org/10.48550/arXiv.2304.13014 ER - TY - CHAP A1 - Rueckert, Tobias A1 - Rieder, Maximilian A1 - Feussner, Hubertus A1 - Wilhelm, Dirk A1 - Rueckert, Daniel A1 - Palm, Christoph ED - Maier, Andreas ED - Deserno, Thomas M. ED - Handels, Heinz ED - Maier-Hein, Klaus ED - Palm, Christoph ED - Tolxdorff, Thomas T1 - Smoke Classification in Laparoscopic Cholecystectomy Videos Incorporating Spatio-temporal Information T2 - Bildverarbeitung für die Medizin 2024: Proceedings, German Workshop on Medical Image Computing, March 10-12, 2024, Erlangen N2 - Heavy smoke development represents an important challenge for operating physicians during laparoscopic procedures and can potentially affect the success of an intervention due to reduced visibility and orientation. Reliable and accurate recognition of smoke is therefore a prerequisite for the use of downstream systems such as automated smoke evacuation systems. Current approaches distinguish between non-smoked and smoked frames but often ignore the temporal context inherent in endoscopic video data. In this work, we therefore present a method that utilizes the pixel-wise displacement from randomly sampled images to the preceding frames determined using the optical flow algorithm by providing the transformed magnitude of the displacement as an additional input to the network. Further, we incorporate the temporal context at evaluation time by applying an exponential moving average on the estimated class probabilities of the model output to obtain more stable and robust results over time. We evaluate our method on two convolutional-based and one state-of-the-art transformer architecture and show improvements in the classification results over a baseline approach, regardless of the network used. Y1 - 2024 U6 - https://doi.org/10.1007/978-3-658-44037-4_78 SP - 298 EP - 303 PB - Springeer CY - Wiesbaden ER - TY - JOUR A1 - Tobias, Rueckert A1 - Daniel, Rueckert A1 - Palm, Christoph T1 - Corrigendum to “Methods and datasets for segmentation of minimally invasive surgical instruments in endoscopic images and videos: A review of the state of the art” [Comput. Biol. Med. 169 (2024) 107929] JF - Computers in Biology and Medicine N2 - The authors regret that the SAR-RARP50 dataset is missing from the description of publicly available datasets presented in Chapter 4. Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-70337 N1 - Aufsatz unter: https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/6983 PB - Elsevier ER - TY - INPR A1 - Mendel, Robert A1 - Rueckert, Tobias A1 - Wilhelm, Dirk A1 - Rueckert, Daniel A1 - Palm, Christoph T1 - Motion-Corrected Moving Average: Including Post-Hoc Temporal Information for Improved Video Segmentation N2 - Real-time computational speed and a high degree of precision are requirements for computer-assisted interventions. Applying a segmentation network to a medical video processing task can introduce significant inter-frame prediction noise. Existing approaches can reduce inconsistencies by including temporal information but often impose requirements on the architecture or dataset. This paper proposes a method to include temporal information in any segmentation model and, thus, a technique to improve video segmentation performance without alterations during training or additional labeling. With Motion-Corrected Moving Average, we refine the exponential moving average between the current and previous predictions. Using optical flow to estimate the movement between consecutive frames, we can shift the prior term in the moving-average calculation to align with the geometry of the current frame. The optical flow calculation does not require the output of the model and can therefore be performed in parallel, leading to no significant runtime penalty for our approach. We evaluate our approach on two publicly available segmentation datasets and two proprietary endoscopic datasets and show improvements over a baseline approach. KW - Deep Learning KW - Video KW - Segmentation Y1 - 2024 U6 - https://doi.org/10.48550/arXiv.2403.03120 ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Rauber, David A1 - Rueckert, Tobias A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Real-time detection and delineation of tissue during third-space endoscopy using artificial intelligence (AI) T2 - Endoscopy N2 - Aims  AI has proven great potential in assisting endoscopists in diagnostics, however its role in therapeutic endoscopy remains unclear. Endoscopic submucosal dissection (ESD) is a technically demanding intervention with a slow learning curve and relevant risks like bleeding and perforation. Therefore, we aimed to develop an algorithm for the real-time detection and delineation of relevant structures during third-space endoscopy. Methods  5470 still images from 59 full length videos (47 ESD, 12 POEM) were annotated. 179681 additional unlabeled images were added to the training dataset. Consequently, a DeepLabv3+ neural network architecture was trained with the ECMT semi-supervised algorithm (under review elsewhere). Evaluation of vessel detection was performed on a dataset of 101 standardized video clips from 15 separate third-space endoscopy videos with 200 predefined blood vessels. Results  Internal validation yielded an overall mean Dice score of 85% (68% for blood vessels, 86% for submucosal layer, 88% for muscle layer). On the video test data, the overall vessel detection rate (VDR) was 94% (96% for ESD, 74% for POEM). The median overall vessel detection time (VDT) was 0.32 sec (0.3 sec for ESD, 0.62 sec for POEM). Conclusions  Evaluation of the developed algorithm on a video test dataset showed high VDR and quick VDT, especially for ESD. Further research will focus on a possible clinical benefit of the AI application for VDR and VDT during third-space endoscopy. KW - Speiseröhrenkrankheit KW - Künstliche Intelligenz KW - Artificial Intelligence Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1765128 VL - 55 IS - S02 SP - S53 EP - S54 PB - Thieme ER - TY - JOUR A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Palm, Christoph A1 - Probst, Andreas A1 - Muzalyova, Anna A1 - Scheppach, Markus W. A1 - Nagl, Sandra A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Schulz, Dominik A. H. A1 - Schlottmann, Jakob A1 - Prinz, Friederike A1 - Rauber, David A1 - Rueckert, Tobias A1 - Matsumura, Tomoaki A1 - Fernández-Esparrach, Glòria A1 - Parsa, Nasim A1 - Byrne, Michael F. A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett’s esophagus: a tandem randomized and video trial JF - Endoscopy N2 - Background This study evaluated the effect of an artificial intelligence (AI)-based clinical decision support system on the performance and diagnostic confidence of endoscopists in their assessment of Barrett’s esophagus (BE). Methods 96 standardized endoscopy videos were assessed by 22 endoscopists with varying degrees of BE experience from 12 centers. Assessment was randomized into two video sets: group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett’s esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. Results AI had a stand-alone sensitivity, specificity, and accuracy of 92.2%, 68.9%, and 81.3%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3%, 58.1%, and 71.5%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.8% [95%CI 65.2%–74.2%] to 78.0% [95%CI 74.0%–82.0%]; specificity 67.3% [95%CI 62.5%–72.2%] to 72.7% [95%CI 68.2%–77.3%]). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. Conclusion BE nonexperts benefitted significantly from additional AI. BE experts and nonexperts remained significantly below the stand-alone performance of AI, suggesting that there may be other factors influencing endoscopists’ decisions to follow or discard AI advice. KW - Artificial Intelligence KW - Endoscopy KW - Medical Image Computing Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-72818 PB - Georg Thieme Verlag CY - Stuttgart ER -