TY - JOUR A1 - Stichel, Thomas A1 - Frick, Thomas A1 - Laumer, Tobias A1 - Tenner, Felix A1 - Hausotte, Tino A1 - Merklein, Marion A1 - Schmidt, Michael T1 - A Round Robin study for selective laser sintering of polymers: Back tracing of the pore morphology to the process parameters JF - Journal of Materials Processing Technology N2 - The mechanical properties of polymer parts built by Selective Laser Sintering are strongly related to the internal microstructure which differs with the applied production parameters. The paper focuses on the back tracing of the pore morphology of laser sintered polyamide-12 samples to the process parameters. Therefore, a data base is used which is supplied by a Round Robin initiative and includes mechanical tensile tests and the microstructural analysis of the pore morphology of several different sample charges built with different machines. The pore morphologies (porosity, pore density, pore shape and pore arrangement) measured by X-ray computed tomography are compared and discussed regarding the employed parameters and the resulting mechanical properties. The investigations point out that pore density is a superior indicator than porosity for mechanical issues. This is especially valid along the build direction since pore morphology has shown to be strongly anisotropic. Moreover, the analysis revealed that pore density is strongly affected by the process temperature, which is proved to be essential for the fabrication of mechanical robust parts using Selective Laser Sintering. Y1 - 2018 U6 - https://doi.org/10.1016/j.jmatprotec.2017.10.013 VL - 252 IS - February SP - 537 EP - 545 PB - Elsevier ER - TY - JOUR A1 - Stichel, Thomas A1 - Frick, Thomas A1 - Laumer, Tobias A1 - Tenner, Felix A1 - Hausotte, Tino A1 - Merklein, Marion A1 - Schmidt, Michael T1 - A Round Robin study for Selective Laser Sintering of polyamide 12: Microstructural origin of the mechanical properties JF - Optics & Laser Technology N2 - The mechanical and microstructural investigation of polymer parts (polyamide 12) fabricated by Selective Laser Sintering as part of a Round Robin initiative is presented. The paper focuses on the microstructural analysis of the Round Robin samples and their evaluation regarding their effect on mechanical properties with respect to each other. Therefore optical microscopy on microtomed samples, X-ray computed tomography and Differential Scanning Calorimetry is used to determine the morphology of residual particle cores and of internal pores. Y1 - 2017 U6 - https://doi.org/10.1016/j.optlastec.2016.09.042 VL - 89 SP - 31 EP - 40 PB - Elsevier ER -