TY - CHAP A1 - Sterner, Michael A1 - Bauer, Franz A1 - Crotogino, Fritz A1 - Eckert, Fabian A1 - von Olshausen, Christian A1 - Teichmann, Daniel A1 - Thema, Martin ED - Sterner, Michael ED - Stadler, Ingo T1 - Chemical Energy Storage T2 - Handbook of Energy Storage N2 - Purely electrical energy storage technologies are very efficient, however they are also very expensive and have the smallest capacities. Electrochemical-energy storage reaches higher capacities at smaller costs, but at the expense of efficiency. This pattern continues in a similar way for chemical-energy storage. In terms of capacities, the limits of batteries (accumulators) are reached when low-loss long-term storage is of need. Chemical-energy storage and stocking fulfills these requirements completely. The storing itself may be subject to significant efficiency losses, but, from today’s point of view and in combination with the existing gas and fuel infrastructure, it is the only national option with regards to the long-term storage of renewable energies. Chemical-energy storage is the backbone of today’s conventional energy supply. Solid (wood and coal), liquid (mineral oil), and gaseous (natural gas) energy carriers are ‘energy storages’ themselves, and are stored using different technologies. In the course of energy transition, chemical-energy storage will be of significant importance, mainly as long-term storage for the power sector, but also in the form of combustibles and fuels for transport and heat. Not only are conventional storing technologies discussed within this chapter, but a detailed explanation is also given about the storage of renewable energies in the form of gaseous (power-to-gas, PtG) and liquid (power-to-liquid, PtL) energy carriers for electricity, heat, chemicals, and in the form of synthetic fuels. Y1 - 2019 SN - 978-3-662-55503-3 U6 - https://doi.org/10.1007/978-3-662-55504-0_8 SP - 325 EP - 482 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Sterner, Michael A1 - Bauer, Franz A1 - Crotogino, Fritz A1 - Eckert, Fabian A1 - von Olshausen, Christian A1 - Teichmann, Daniel A1 - Thema, Martin T1 - Chemische Energiespeicher T2 - Energiespeicher - Bedarf, Technologien, Integration KW - Energiespeicher KW - Elektrochemisches Verfahren KW - Elektrochemische Energieumwandlung Y1 - 2017 SN - 978-3-662-48893-5 SN - 978-3-662-48892-8 U6 - https://doi.org/10.1007/978-3-662-48893-5_8 SP - 327 EP - 493 PB - Springer Vieweg CY - Berlin ; Heidelberg ET - 2. Auflage ER -