TY - JOUR A1 - Ignasiak, Dominika A1 - Dendorfer, Sebastian A1 - Ferguson, Stephen J. T1 - Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading JF - Journal of Biomechanics N2 - Musculoskeletal modeling offers an invaluable insight into the spine biomechanics. A better understanding of thoracic spine kinetics is essential for understanding disease processes and developing new prevention and treatment methods. Current models of the thoracic region are not designed for segmental load estimation, or do not include the complex construct of the ribcage, despite its potentially important role in load transmission. In this paper, we describe a numerical musculoskeletal model of the thoracolumbar spine with articulated ribcage, modeled as a system of individual vertebral segments, elastic elements and thoracic muscles, based on a previously established lumbar spine model and data from the literature. The inverse dynamics simulations of the model allow the prediction of spinal loading as well as costal joints kinetics and kinematics. The intradiscal pressure predicted by the model correlated well (R2=0.89) with reported intradiscal pressure measurements, providing a first validation of the model. The inclusion of the ribcage did not affect segmental force predictions when the thoracic spine did not perform motion. During thoracic motion tasks, the ribcage had an important influence on the predicted compressive forces and muscle activation patterns. The compressive forces were reduced by up to 32%, or distributed more evenly between thoracic vertebrae, when compared to the predictions of the model without ribcage, for mild thoracic flexion and hyperextension tasks, respectively. The presented musculoskeletal model provides a tool for investigating thoracic spine loading and load sharing between vertebral column and ribcage during dynamic activities. Further validation for specific applications is still necessary. KW - Inverse dynamics KW - Musculoskeletal model KW - Thoracolumbar spine KW - Brustwirbelsäule KW - Brustkorb KW - Biomechanik KW - Mechanische Belastung KW - Prognose Y1 - 2016 U6 - https://doi.org/10.1016/j.jbiomech.2015.10.010 VL - vol. 49 IS - 6 SP - 959 EP - 966 PB - Elsevier Science ER - TY - JOUR A1 - De Pieri, Enrico A1 - Atzori, Federica A1 - Ferguson, Stephen J. A1 - Dendorfer, Sebastian A1 - Leunig, Michael A1 - Aepli, Martin T1 - Contact force path in total hip arthroplasty: effect of cup medialisation in a whole-body simulation JF - HIP International N2 - Background: Cup medialisation down to the true acetabular floor in total hip arthroplasty with a compensatory femoral offset increase seems to be mechanically advantageous for the abductor muscles due to the relocation of the lever arms (body weight lever arm decreased, abductor lever arm increased). However, limited information is currently available about the effects of this reconstruction type at the head cup interface, compared to an anatomical reconstruction that maintains the natural lever arms. Through a whole-body simulation analysis, we compared medialised versus anatomical reconstruction in THA to analyse the effects on: (1) contact force magnitude at the head cup interface; (2) contact force path in the cup; and (3) abductor activity. Methods: Musculoskeletal simulations were performed to calculate the above-mentioned parameters using inverse dynamics analysis. The differences between the virtually implanted THAs were calculated to compare the medialised versus anatomical reconstruction. Results: Cup medialisation with compensatory femoral offset increase led to: (1) a reduction in contact force magnitude at the head cup interface up to 6.6%; (2) a similar contact force path in the cup in terms of sliding distance and aspect ratio; and (3) a reduction in abductor activity up to 17.2% (gluteus medius). Conclusions: In our opinion, these potential biomechanical gains do not generally justify a fully medialised reconstruction, especially in younger patients that are more likely to undergo revision surgery in their lifetime. Cup medialisation should be performed until sufficient press fit and bony coverage of a properly sized and oriented cup can be achieved. KW - Cup medialisation KW - femoral offset KW - hip contact force KW - total hip anthroplasty KW - total hip replacement KW - Hüftgelenkprothese KW - Kontaktkraft KW - Biomechanische Analyse KW - Simulation Y1 - 2020 U6 - https://doi.org/10.1177/1120700020917321 VL - 31 IS - 5 SP - 624 EP - 631 PB - Sage ER - TY - CHAP A1 - Ignasiak, Dominika A1 - Dendorfer, Sebastian A1 - Ferguson, Stephen J. T1 - Thoracolumbar spine model with articulated rigcage for the prediction of dynamic spinal loading T2 - International Workshop on Spine Loading and Deformation: From Loading to Recovery, 2-4 July 2015, Julius Wolff Institute, Charité-Universitatsmedizin Berlin, Germany Y1 - 2015 ER - TY - CHAP A1 - Spreiter, G. A1 - Galibarov, Pavel E. A1 - Dendorfer, Sebastian A1 - Ferguson, Stephen J. T1 - Influence of kyphosis on spinal loading T2 - 10th International Symposium Computer Methods in Biomechanics and Biomedical Engineering (CMBBE) Meeting, 11. - 14. April 2012, Berlin Y1 - 2012 ER -