TY - CHAP A1 - Schmidt, Hans-Peter A1 - Fuchs, Andreas A1 - Fuchs, Stefan T1 - Simultaneous contact less charging of multiple electric vehicles: Contact less power and data transfer for multiple distributed loads T2 - 2014 4th International Electric Drives Production Conference ( 30 Sept.-1 Oct. 2014, Nuremberg, Germany N2 - A design of a 3-phase inductive power and data transfer for multiple stationary loads is proposed. It focuses on stable load voltages while minimizing electromagnetic interference. Loads are contactless charging units of electric vehicles at car parks. Physical properties of the inductive couplers are modelled via 3-D FEM and lumped parameters are used for system studies. Design principles are verified at laboratory scale with a purpose built test stand. KW - charging infrastructure KW - Coils KW - contact less charging KW - Couplers KW - Couplings KW - Data transfer KW - Electric vehicles KW - electro mobility KW - Feeds KW - multiple stationary loads KW - Windings Y1 - 2014 U6 - https://doi.org/10.1109/EDPC.2014.6984435 SP - 1 EP - 3 PB - IEEE ER - TY - JOUR A1 - Pangerl, Jonas A1 - Sukul, Pritam A1 - Rück, Thomas A1 - Fuchs, Patricia A1 - Weigl, Stefan A1 - Miekisch, Wolfram A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - An inexpensive UV-LED photoacoustic based real-time sensor-system detecting exhaled trace-acetone JF - Photoacoustics N2 - n this research we present a low-cost system for breath acetone analysis based on UV-LED photoacoustic spectroscopy. We considered the end-tidal phase of exhalation, which represents the systemic concentrations of volatile organic compounds (VOCs) – providing clinically relevant information about the human health. This is achieved via the development of a CO2-triggered breath sampling system, which collected alveolar breath over several minutes in sterile and inert containers. A real-time mass spectrometer is coupled to serve as a reference device for calibration measurements and subsequent breath analysis. The new sensor system provided a 3σ detection limit of 8.3 ppbV and an NNEA of 1.4E-9 Wcm 1Hz 0.5. In terms of the performed breath analysis measurements, 12 out of 13 fell within the error margin of the photoacoustic measurement system, demonstrating the reliability of the measurements in the field. KW - Photoacoustic spectroscopy KW - Real-time mass-spectrometry KW - Breath analysis KW - Acetone KW - UV-LED Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-71279 SN - 2213-5979 N1 - Corresponding author der OTH Regensburg: Jonas Pangerl VL - 38 PB - Elsevier ER - TY - INPR A1 - Pangerl, Jonas A1 - Sukul, Pritam A1 - Rück, Thomas A1 - Fuchs, Patricia A1 - Weigl, Stefan A1 - Miekisch, Wolfram A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - An Inexpensive Uv-Led Photoacoustic Based Real-Time Sensor-System Detecting Exhaled Trace-Acetone N2 - In this research we present a low-cost system for breath acetone analysis based on UV-LED photoacoustic spectroscopy. We considered the end-tidal phase of exhalation, which represents the systemic concentrations of volatile organic compounds (VOCs) – providing clinically relevant information about the human health. This is achieved via the development of a CO2-triggered breath sampling system, which collected alveolar breath over several minutes in sterile and inert containers. A real-time mass spectrometer is coupled to serve as a reference device for calibration measurements and subsequent breath analysis. The new sensor system provided a 3σ detection limit of 6.4 ppbV and an NNEA of 1.1E-9 Wcm-1Hz-0.5. In terms of the performed breath analysis measurements, 12 out of 13 fell within the error margin of the photoacoustic measurement system, demonstrating the reliability of the measurements in the field. KW - photoacoustic spectroscopy KW - real-time mass-spectrometry KW - breath analysis KW - acetone KW - UV-LED Y1 - 2024 U6 - https://doi.org/10.2139/ssrn.4724198 N1 - Der Aufsatz wurde peer-reviewed unter folgender DOI veröffentlicht: https://doi.org/10.1016/j.pacs.2024.100604 PB - Elsevier ER -