TY - CHAP A1 - Lee, Wai-Kong A1 - Schubert, Martin J. W. A1 - Ho, Stanley Jian-Qin T1 - Multi-source energy harvesting and storage for floating wireless-sensor-network nodes T2 - 2016 IEEE Industrial Electronics and Applications Conference (IEACon 2016), 20.-22. Nov. 2016, Kota Kinabalu, Malaysia Y1 - 2016 SN - 9781509009268 ER - TY - JOUR A1 - Lee, Wai-Kong A1 - Schubert, Martin J. W. A1 - Ooi, Boon Yaik A1 - Ho, Stanley Jian-Qin T1 - Multi-source energy harvesting and storage for floating wireless sensor network nodes with Long Range Communication Capability JF - IEEE Transactions on Industry Applications N2 - Wireless sensor networks are widely used for environmental monitoring in remote areas. They are mainly composed of wireless sensor nodes, usually powered by batteries with limited capacity, but are expected to communicate in long range and operate for extended time periods. To overcome these limitations, many energy harvesting techniques are proposed to power wireless nodes for prolonged operation, whereas multihop techniques are utilized to extend the communication range. In this paper, a novel floating device with multisource energy harvesting technology that can be used as a wireless sensor node is proposed. The long range communication between wireless sensor nodes and a gateway is established through LoRa technology. In addition to conventional solar panels, an energy harvesting technique based on thermoelectric generators exploiting thermal differences created between water surface and materials exposed to sunlight is proposed. Energy generated from photovoltaic and thermoelectric generators is combined to power the wireless sensor node. This floating device consumes 6.6216 Wh per day when used as a wireless sensor node for the collection and transmission of environmental data. The sensor node can operate on a water surface for at least 9.6 days when it is not exposed to sunlight. During a sunny day, the floating device can harvest 8.375 Wh from solar panels and 0.425 Wh from thermoelectric generation. In other words, the floating device harvests sufficient energy to be self-sustaining during sunny days. KW - Wireless sensor networks KW - Energy harvesting KW - floating device KW - LoRa KW - sensor node KW - solar energy KW - thermoelectric generation Y1 - 2018 U6 - https://doi.org/10.1109/TIA.2018.2799 VL - 54 IS - 3 SP - 2606 EP - 2615 PB - IEEE ER -