TY - JOUR A1 - Bachmann, Michael A1 - Düsberg, Felix A1 - Langer, Christoph A1 - Herdl, Florian A1 - Bergbreiter, Lukas A1 - Dams, Florian A1 - Miyakawa, Natuski A1 - Eggert, Tobias A1 - Pahlke, Andreas A1 - Edler, Simon A1 - Prommesberger, Christian A1 - Ławrowski, Robert Damian A1 - Hausladen, Matthias A1 - Schreiner, Rupert T1 - Vacuum-sealed field emission electron gun JF - Journal of Vacuum Science & Technology B N2 - A compact vacuum-sealed field emission electron gun with an operation voltage below 5 kV is presented. With a 150 nm thick pyrolytic carbon membrane, a transmission of 40% at 5 kV is obtained. For more than 2500 h of continuous operation at an emission current of 100 nA, no significant increase (<50V ) and almost no degradation were found. From this measurement, a lifetime of more than 10 000 h at continuous operation with approximately a linear increase of the extraction voltage from about 545 V to about 730 V is predicted. This electron source enables application of field emitter arrays in poor vacuum or even ambient pressure. ACKNOWLEDGMENT This work was supported by the German Federal Ministry for Economic Affairs and Energy under Project No. ZF4081502GM8. C.P., R.L., M.H., and R.S. were supported by Grant No. ZF4562901GM8. Y1 - 2020 U6 - https://doi.org/10.1116/1.5139316 VL - 38 IS - 2 PB - AIP Publishing ER - TY - JOUR A1 - Edler, Simon A1 - Bachmann, Michael A1 - Breuer, Janis A1 - Dams, Florian A1 - Düsberg, Felix A1 - Hofmann, Martin A1 - Jakšič, Jasna A1 - Pahlke, Andreas A1 - Langer, Christoph A1 - Ławrowski, Robert Damian A1 - Prommesberger, Christian A1 - Schreiner, Rupert T1 - Influence of adsorbates on the performance of a field emitter array in a high voltage triode setup JF - Journal of Applied Physics N2 - In the present work, black-silicon field emitter arrays (FEAs) are investigated regarding the influence of residual gas pressure on the characteristics and lifetime in the high voltage triode setup. Current-voltage-characteristics at different pressure levels are recorded and show a decreasing emission current with rising pressure. This decrease can be explained by an increase of the work function and charging of the emitter surface caused by adsorbates. The emission current can be restored to its initial value by heating of the FEA up to 110 °C during active emission. With this regeneration procedure, an extended lifetime from about 20 h to 440 h at a residual gas pressure of 10−5 mbar is achieved. Y1 - 2017 U6 - https://doi.org/10.1063/1.4987134 VL - 122 ER - TY - JOUR A1 - Breuer, Janis A1 - Bachmann, Michael A1 - Düsberg, Felix A1 - Pahlke, Andreas A1 - Edler, Simon A1 - Langer, Christoph A1 - Prommesberger, Christian A1 - Ławrowski, Robert Damian A1 - Schreiner, Rupert A1 - Serbun, Pavel A1 - Lützenkirchen-Hecht, Dirk T1 - Extraction of the current distribution out of saturated integral measurement data of p-type silicon field emitter arrays JF - Journal of Vacuum Science and Technology B N2 - At the moment, only complicated techniques are known for the determination of array properties of field emitter arrays such as the number of active tips, the current distribution, or the individual tip radii. In this work, a method for extracting these parameters from integral measurement data is presented. A model describing the characteristics of a single emitter, including the saturation as a function of the applied voltage and the emitter radius, is developed. It is shown that experimental data of field emitter arrays can be represented as the sum of these functions and the characteristic parameters can be fitted to field emission data of an array. Using this method, the values of the radii as well as the parameters of distribution models can be determined directly. Analysis of experimental data from p-type Si emitter arrays shows that only 1–2% of the tips contribute significantly. Y1 - 2018 U6 - https://doi.org/10.1116/1.5035189 VL - 36 IS - 5 PB - AIP Publishing ER - TY - GEN A1 - Düsberg, Felix A1 - Bachmann, Michael A1 - Edler, Simon A1 - Pahlke, Andreas A1 - Langer, Christoph A1 - Prommesberger, Christian A1 - Schreiner, Rupert A1 - Bunert, Erik A1 - Wendt, Cornelius A1 - Zimmermann, Stefan T1 - Novel Non-Radiative Electron Source T2 - 43rd International Symposium of Capillary Chromatography & 16h GC x GC Symposium 2019 N2 - Recently a non-radioactive electron capture detector based on a thermionic electron emitter has been demonstrated [1]. Using field emitter arrays (FEAs) would yield non-radioactive portable low power devices with fast switching capability. By combining FEAs with a vacuum-sealed housing and an electron transparent membrane window, such electron sources can be operated in an ambient pressure environment. Y1 - 2019 ER - TY - JOUR A1 - Bachmann, Michael A1 - Düsberg, Felix A1 - Pahlke, Andreas A1 - Edler, Simon A1 - Schels, Andreas A1 - Herdl, Florian A1 - Ławrowski, Robert Damian A1 - Schreiner, Rupert T1 - High current silicon nanowire field emitter arrays JF - Journal of Vacuum Science & Technology B N2 - Arrays of n-doped silicon nanowire field emitters with a high aspect ratio are realized by a novel dry etching technique. Compared to the high current silicon emitters in the literature, the manufacturing process is much simpler and requires only a single photolithography step and two dry etching steps. The cathodes realized with this method exhibit a total current of 20 mA from an active area of 4×4 mm2, which is significantly higher than that for most known structures made from silicon and also represents good performance in comparison with other emitter types, e.g., carbon nanotubes. In addition to characterization in ultrahigh vacuum, measurements at 10−5 mbar are performed and compared with our recent silicon emitters. Compared to these cathodes, the structures with the nanowires exhibit at least two orders of magnitude higher current-carrying capability. Y1 - 2022 U6 - https://doi.org/10.1116/6.0001639 VL - 40 IS - 1 PB - AIP Publishing ER - TY - CHAP A1 - Edler, Simon A1 - Hansch, Walter A1 - Prommesberger, Christian A1 - Schreiner, Rupert T1 - Influence of adsorbates on the performance of a field emitter array in a high voltage triode setup T2 - International Vacuum Nanoelectronics Conference (IVNC), 31st, 2018, Kyoto, Japan N2 - The influence of residual gas pressure on the characteristics of black-Silicon field emitter arrays in a high voltage triode setup is investigated. I-Vcharacteristics at different pressure levels show a decrease of emission current with rising pressure. This can be explained by an increase of the work function and charging of the emitter surface due to adsorbates. The initial characteristics can be restored by heating the FEA up to 110 °C during electron emission. This regeneration procedure enables an extension of the lifetime from about 20 h to 440 h at a residual gas pressure of 10 -5 mbar. KW - semiconductor field emission KW - field emitter array KW - silicon tips KW - emission current stability Y1 - 2018 U6 - https://doi.org/10.1109/IVNC.2018.8520214 PB - IEEE ER - TY - CHAP A1 - Buchner, Philipp A1 - Bomke, Vitali A1 - Hausladen, Matthias A1 - Edler, Simon A1 - Bachmann, Michael A1 - Schreiner, Rupert T1 - Investigation on the Emission Behaviour of p-doped Silicon Field Emission Arrays with Individually Controllable Single Tips T2 - 2021 34th International Vacuum Nanoelectronics Conference (IVNC): 7/5/2021 - 7/9/2021, Lyon, France N2 - Four individually controllable emission tips consisting of <111> p-Type silicon, were structured on a glass substrate by laser ablation. A matching extraction grid was manufactured in the same manner and aligned with the emitters. The resulting samples were characterized in ultra-high vacuum. As expected, the individual currents show a strong saturation and in the saturation region a considerably lower current fluctuation than n-type silicon due to charge carrier depletion. The individual tips behave completely independent behaviour from each other and the overall emission can be deduced from the sum of the currents through the individual tips. Y1 - 2021 SN - 978-1-6654-2589-6 U6 - https://doi.org/10.1109/IVNC52431.2021.9600756 SP - 1 EP - 2 PB - IEEE ER - TY - CHAP A1 - Herdl, Florian A1 - Bachmann, Michael A1 - Wohlfartsstätter, Dominik A1 - Düsberg, Felix A1 - Dudeck, Markus A1 - Eder, Magdalena A1 - Meyer, Manuel A1 - Pahlke, Andreas A1 - Edler, Simon A1 - Schels, Andreas A1 - Hansch, Walter A1 - Schreiner, Rupert A1 - Wohlfartsstatter, Dominik A1 - Dusberg, Felix T1 - A novel current dependent field emission performance test T2 - 2021 34th International Vacuum Nanoelectronics Conference (IVNC): 5-9 July 2021, Lyon, France N2 - A current dependent performance test for comparison of different field emitter arrays is introduced. Statistical analysis is enabled due to a short measurement time and as a main feature the electric field shift, comparable to the degradation of the emitter is examined. Significance of the test method is shown by a comparison of field emitter arrays with different doping levels. KW - Current measurement KW - Field emitter arrays KW - Statistical analysis KW - Systematics KW - Time measurement KW - Tools KW - Vacuum systems Y1 - 2021 U6 - https://doi.org/10.1109/IVNC52431.2021.9600695 SP - 1 EP - 2 ER - TY - CHAP A1 - Schels, Andreas A1 - Edler, Simon A1 - Hansch, Walter A1 - Bachmann, Michael A1 - Herdl, F. A1 - Dusberg, F. A1 - Eder, Magdalena A1 - Meyer, M. A1 - Dudek, M. A1 - Pahlke, A. A1 - Schreiner, Rupert ED - Purcell, Stephen ED - Mazellier, Jean-Paul T1 - Current dependent performance test used on different types of silicon field emitter arrays T2 - 2021 34th International Vacuum Nanoelectronics Conference (IVNC): 5-9 July 2021, Lyon, France N2 - A current dependent performance test is used to investigate the influence of doping and emitter geometry on the lifetime of silicon field emitter arrays. The measurements reveal an improved performance for lower n-type dopant concentrations. Furthermore, two new types of field emitters are introduced by slightly varying the original fabrication process [1]. The comparison shows superiority of tip like emitters over blade like structures. Y1 - 2021 SN - 978-1-6654-2589-6 U6 - https://doi.org/10.1109/IVNC52431.2021.9600787 SP - 1 EP - 2 PB - IEEE CY - Piscataway, NJ ER - TY - JOUR A1 - Schels, Andreas A1 - Edler, Simon A1 - Herdl, Florian A1 - Hansch, Walter A1 - Bachmann, Michael A1 - Ritter, Daniela A1 - Dudeck, Markus A1 - Duesberg, Felix A1 - Meyer, Manuel A1 - Pahlke, Andreas A1 - Hausladen, Matthias A1 - Buchner, Philipp A1 - Schreiner, Rupert T1 - In situ quantitative field emission imaging using a low-cost CMOS imaging sensor JF - Journal of Vacuum Science & Technology B N2 - Spatially resolved field emission measurements represent an important factor in further development of existing field emitter concepts. In this work, we present a novel approach that allows quantitative analysis of individual emission spots from integral current-voltage measurements using a low-cost and commercially available CMOS camera. By combining different exposure times to extrapolate oversaturated and underexposed pixels, a near congruence of integral current and image brightness is shown. The extrapolation also allows parallel investigation of all individual tips participating in the total current with currents ranging from a few nanoampere to one microampere per tip. The sensitivity, which is determined by the integral brightness-to-current ratio, remains unchanged within the measurement accuracy even after ten full measurement cycles. Using a point detection algorithm, the proportional current load of each individual tip of the field emitter array is analyzed and compared at different times during the initial measurement cycle. Together with the extracted I-V curves of single emission spots from the integral measurement, the results indicate the effect of premature burnout of particularly sharp tips during conditioning of the emitter. KW - ARRAYS KW - ELECTRON-EMISSION KW - EMITTERS KW - FakANK Y1 - 2022 U6 - https://doi.org/10.1116/6.0001551 VL - 40 IS - 1 PB - AIP Publishing ER - TY - JOUR A1 - Edler, Simon A1 - Schels, Andreas A1 - Herdl, Florian A1 - Hansch, Walter A1 - Bachmann, Michael A1 - Dudeck, Markus A1 - Duesberg, Felix A1 - Pahlke, Andreas A1 - Hausladen, Matthias A1 - Buchner Philipp, A1 - Schreiner, Rupert T1 - Origin of the current saturation level of p-doped silicon field emitters JF - Journal of Vacuum Science & Technology B N2 - Using p-type semiconductors for field emitters is one simple way to realize an integrated current limiter to improve the lifetime of the cathode. In this work, the origin of the current saturation of p-type silicon emitters is investigated in detail. Single emitters are electrically characterized and compared to simulation results. With a simulation model considering a high surface generation rate and elevated tip temperature, a good agreement to the measured data is found. This observation is supported further by alteration of the surface experimentally. Electrical measurements after different treatments in hydrofluoric acid as well as heated and subsequent operation at room temperature are well explained by the influence of surface generation. Furthermore, it is shown that the field penetration leads to a small voltage drop and a strong geometry-dependent reduction of the field enhancement factor. KW - EMISSION KW - GROWTH KW - NATIVE-OXIDE Y1 - 2022 U6 - https://doi.org/10.1116/6.0001554 VL - 40 IS - 1 PB - AIP Publishing ER - TY - JOUR A1 - Bachmann, Michael A1 - Düsberg, Felix A1 - Pahlke, Andreas A1 - Edler, Simon A1 - Schels, Andreas A1 - Herdl, Florian A1 - Hausladen, Matthias A1 - Buchner, Philipp A1 - Schreiner, Rupert T1 - The “LED‐version” of the electron gun: An electron source for operation in ambient pressure environments based on silicon field emitter arrays JF - Vakuum in Forschung und Praxis N2 - We report on our progress to develop and optimize electron sources for practical applications. A simple fabrication process is introduced based on a wafer dicing saw and a wet chemical etch step without the need for a clean room. Due to the formation of crystal facets the samples show a homogeneous geometry throughout the array. Characterization techniques are developed to systematically compare various arrays. A very defined measurement procedure based on current controlled IV-sweeps as well as lifetime measurements at various currents is proposed. To investigate the current distribution in the array a commercial CMOS detector is used and shows the potential for in depth analysis of the arrays. Finally, a compact hermetically sealed housing is presented enabling electron generation in atmospheric pressure environments. Y1 - 2023 U6 - https://doi.org/10.1002/vipr.202300801 VL - 35 IS - 3 SP - 32 EP - 37 PB - Wiley ER - TY - CHAP A1 - Herdl, Florian A1 - Kueddelsmann, Maximillian J. A1 - Schels, Andreas A1 - Bachmann, Michael A1 - Edler, Simon A1 - Wohlfartsstätter, Dominik A1 - Düsberg, Felix A1 - Prugger, Alexander A1 - Dillig, Michael A1 - Dams, Florian A1 - Schreiner, Rupert A1 - Coileáin, Cormac Ó. A1 - Zimmermann, Stefan A1 - Pahlke, Andreas A1 - Duesberg, Georg S. T1 - Characterization and Operation of Graphene-Oxide-Semiconductor Emitters at Atmospheric Pressure Levels T2 - 2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA N2 - In recent years Graphene-Oxide-Semiconductor (GOS) electron emitters have attracted a lot of interest due to their outstanding durability in modest vacuum conditions. However, the performance at ambient pressure remains largely unexplored. In this study GOS-emitters are characterized in nitrogen and air at atmospheric pressure, and compared with their vacuum characteristics. For this purpose, lifetime and IV-characteristics measurements are shown. Furthermore, the GOS-emitter was operated as an ionization source for ion mobility spectrometry (IMS) at ambient conditions. KW - durability KW - graphene compounds KW - ion mobility KW - semiconductor-insulator boundaries Y1 - 2023 SN - 979-8-3503-0143-4 U6 - https://doi.org/10.1109/IVNC57695.2023.10188974 SP - 14 EP - 16 PB - IEEE ER - TY - CHAP A1 - Schels, Andreas A1 - Herdl, Florian A1 - Hausladen, Matthias A1 - Wohlfartsstätter, Dominik A1 - Bachmann, Michael A1 - Edler, Simon A1 - Düsberg, Felix A1 - Pahlke, Andreas A1 - Buchner, Philipp A1 - Schreiner, Rupert A1 - Hansch, Walter T1 - Beta Factor Mapping of Individual Emitting Tips During Integral Operation of Field Emission Arrays T2 - 2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA N2 - Emission uniformity mappings of field emitter arrays provide important insight into degradation mechanisms, but are often laborious, non-integral, costly, or not quantifiable. Here, a low-cost Raspberry Pi HQ camera is used as an extraction anode to quantify the emission distribution in field emitter arrays. A verification measurement using controlled SEM electron beams proves, that current-voltage characteristics of individual emission sites can be determined by combining the integral electrical data with the image data. The characteristics are used to quantify the field enhancement factors of an 30x30 silicon field emitter array during integral operation. Comparison of the field enhancement factor distributions before and after a one-hour constant current operation at 1 µA shows an increase from 50 actively emitting tips before to 156 after the measurement. It is shown, that the distribution of field enhancement factors shifts towards lower values, due to the increasing degradation for high field enhancement tips, especially above 1500. KW - field emission KW - field emission imaging KW - field emission distribution KW - field enhancement factor KW - CMOS imaging KW - beta factor Y1 - 2023 SN - 979-8-3503-0143-4 U6 - https://doi.org/10.1109/IVNC57695.2023.10188957 SP - 224 EP - 226 PB - IEEE ER - TY - CHAP A1 - Buchner, Philipp A1 - Hausladen, Matthias A1 - Schels, Andreas A1 - Herdl, Florian A1 - Edler, Simon A1 - Bachmann, Michael A1 - Schreiner, Rupert T1 - An Integrated Silicon Nanowire Field Emission Electron Source on a Chip with High Electron Transmission T2 - 2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA N2 - Silicon nanowire field emission arrays (50 × 50 pillars) were fabricated on a silicon glass hybrid wafer. The glass acts both as the support for the whole structure and insulator between cathode and extraction grid. The extraction grid matches the emitter structures and is optically aligned and adhered to the emitter chip by a vacuum compatible epoxide adhesive. These chips exhibit an emission current of about 600 μA at an extraction voltage of 300 V. The electron transmission through the grid is above 80 %. 58-hour longtime measurements were conducted showing low degradation of the emission current and high stability of electron transmission. KW - Semiconductor device measurement KW - Stimulated emission KW - Optical device fabrication KW - Glass KW - Power system stability KW - Insulators KW - Electron optics Y1 - 2023 SN - 979-8-3503-0143-4 U6 - https://doi.org/10.1109/IVNC57695.2023.10188878 SP - 6 EP - 8 PB - IEEE ER - TY - JOUR A1 - Schels, Andreas A1 - Herdl, Florian A1 - Hausladen, Matthias A1 - Wohlfartsstätter, Dominik A1 - Edler, Simon A1 - Bachmann, Michael A1 - Pahlke, Andreas A1 - Schreiner, Rupert A1 - Hansch, Walter T1 - Quantitative Field Emission Imaging for Studying the Doping-Dependent Emission Behavior of Silicon Field Emitter Arrays JF - Micromachines N2 - Field emitter arrays (FEAs) are a promising component for novel vacuum micro- and nanoelectronic devices, such as microwave power amplifiers or fast-switching X-ray sources. However, the interrelated mechanisms responsible for FEA degradation and failure are not fully understood. Therefore, we present a measurement method for quantitative observation of individual emission sites during integral operation using a low-cost, commercially available CMOS imaging sensor. The emission and degradation behavior of three differently doped FEAs is investigated in current-regulated operation. The measurements reveal that the limited current of the p-doped emitters leads to an activation of up to 55% of the individual tips in the array, while the activation of the n-type FEA stopped at around 30%. This enhanced activation results in a more continuous and uniform current distribution for the p-type FEA. An analysis of the individual emitter characteristics before and after a constant current measurement provides novel perspectives on degradation behavior. A burn-in process that trims the emitting tips to an integral current-specific ideal field enhancement factor is observed. In this process, blunt tips are sharpened while sharp tips are dulled, resulting in homogenization within the FEA. The methodology is described in detail, making it easily adaptable for other groups to apply in the further development of promising FEAs. Y1 - 2023 U6 - https://doi.org/10.3390/mi14112008 VL - 14 IS - 11 PB - MDPI ER - TY - CHAP A1 - Hausladen, Matthias A1 - Buchner, Philipp A1 - Schels, Andreas A1 - Edler, Simon A1 - Bachmann, Michael A1 - Schreiner, Rupert T1 - An Integrated Field Emission Electron Source on a Chip Fabricated by Laser-Micromachining and Mems Technology T2 - 2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA N2 - A silicon field emission electron source consisting of a cathode and a grid electrode has been fabricated by laser micromachining. The cathode features 21×21 tips on an area of 4×4 mm 2 , With a self-aligning MEMS technology for the aperture grid, a high electron transmission (99 %) was achieved. Onset voltages of 50…70 V were observed for an emission current of 1 nA. A stable emission current of 1 mA ± 1.3 % at an extraction voltage of 250 V was observed during a 30-min operation. KW - Apertures KW - Field Emission KW - Field Emission Array KW - Ions KW - Laser-Micromachining KW - Lasers KW - Micromechanical devices KW - Silicon KW - Silicon Field Emission Array KW - Steady-state KW - Vacuum systems Y1 - 2023 SN - 979-8-3503-0143-4 U6 - https://doi.org/10.1109/IVNC57695.2023.10189001 SP - 115 EP - 116 PB - IEEE ER -