TY - GEN A1 - Chavez, Jhohan A1 - Böhm, Valter A1 - Yin, J. A1 - Becker, Tatiana I. A1 - Köhring, S. A1 - Monkman, Gareth J. A1 - Odenbach, S. A1 - Zimmermann, Klaus T1 - Field induced plasticity of magneto-sensitive elastomers for gripping technology applications T2 - 6th Colloquium of SPP 1681, Benediktbeuern, 26. - 28.09.2018 : Book of Abstracts Y1 - 2018 SP - 16 EP - 17 ER - TY - CHAP A1 - Karbasian, H. A1 - Groß-Weege, J. A1 - Nonn, Aida A1 - Zimmermann, S. A1 - Kalwa, Christoph T1 - Assessment of collapse resistance of UOE pipes – comparison of full-scale and ring collapse tests T2 - Proceedings of the 10th International Pipeline Conference 2014 (IPC 2014), September 29 - October 3, 2014, Calgary, Alberta, Canada Y1 - 2014 ER - TY - CHAP A1 - Kouakouo, S. A1 - Böhm, Valter A1 - Zimmermann, Klaus T1 - Analyses of apedal locomotion systems based on ferroelastomers T2 - Proceedings I of the 28st Conference STUDENT EEICT 2022: General papers N2 - In this paper, the movement behavior of amoeboid locomotion system is investigated and the theoretical proof of the locomotion of the system is provided with the finite element method. It is shown that not only the speed of locomotion but also its direction can be influenced by the drive frequency. Depending on the drive frequency, a movement from the home position and a subsequent movement in opposite directions can be achieved. In addition, high speeds of movement can be achieved in a limited frequency range. KW - Technical Mechanics KW - Legless Locomotion System KW - Amoeboid Robot Y1 - 2023 UR - http://www.nusl.cz/ntk/nusl-524810 SN - 978-80-214-6029-4 SP - 447 EP - 451 PB - Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií ER - TY - CHAP A1 - Böhm, Valter A1 - Schorr, Philipp A1 - Feldmeier, T. A1 - Chavez, Jhohan A1 - Henning, S. A1 - Zimmermann, Klaus A1 - Zentner, Lena T1 - An Approach to Robotic End Effectors Based on Multistable Tensegrity Structures T2 - New Trends in Mechanism and Machine Science: 8th European Conference on Mechanism Science (EuCoMeS), 2020 N2 - In this paper compliant multistable tensegrity structures with discrete variable stiffness are investigated. The different stiffness states result from the different prestress states of these structures corresponding to the equilibrium configurations. Three planar tensegrity mechanisms with two stable equilibrium configurations are considered exemplarily. The overall stiffness of these structures is characterized by investigations with regard to their geometric nonlinear static behavior. Dynamical analyses show the possibility of the change between the equilibrium configurations and enable the derivation of suitable actuation strategies. KW - Compliant tensegrity structure KW - Multiple states of self-equilibrium KW - Variable stiffness Y1 - 2020 U6 - https://doi.org/10.1007/978-3-030-55061-5_53 SP - 470 EP - 478 PB - Springer ER - TY - CHAP A1 - Herdl, Florian A1 - Kueddelsmann, Maximillian J. A1 - Schels, Andreas A1 - Bachmann, Michael A1 - Edler, Simon A1 - Wohlfartsstätter, Dominik A1 - Düsberg, Felix A1 - Prugger, Alexander A1 - Dillig, Michael A1 - Dams, Florian A1 - Schreiner, Rupert A1 - Coileáin, Cormac Ó. A1 - Zimmermann, Stefan A1 - Pahlke, Andreas A1 - Duesberg, Georg S. T1 - Characterization and Operation of Graphene-Oxide-Semiconductor Emitters at Atmospheric Pressure Levels T2 - 2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA N2 - In recent years Graphene-Oxide-Semiconductor (GOS) electron emitters have attracted a lot of interest due to their outstanding durability in modest vacuum conditions. However, the performance at ambient pressure remains largely unexplored. In this study GOS-emitters are characterized in nitrogen and air at atmospheric pressure, and compared with their vacuum characteristics. For this purpose, lifetime and IV-characteristics measurements are shown. Furthermore, the GOS-emitter was operated as an ionization source for ion mobility spectrometry (IMS) at ambient conditions. KW - durability KW - graphene compounds KW - ion mobility KW - semiconductor-insulator boundaries Y1 - 2023 SN - 979-8-3503-0143-4 U6 - https://doi.org/10.1109/IVNC57695.2023.10188974 SP - 14 EP - 16 PB - IEEE ER -