TY - JOUR A1 - Rill, Georg A1 - Schuderer, Matthias T1 - A Second-Order Dynamic Friction Model Compared to Commercial Stick–Slip Models JF - Modelling N2 - Friction has long been an important issue in multibody dynamics. Static friction models apply appropriate regularization techniques to convert the stick inequality and the non-smooth stick–slip transition of Coulomb’s approach into a continuous and smooth function of the sliding velocity. However, a regularized friction force is not able to maintain long-term stick. That is why dynamic friction models were developed in recent decades. The friction force depends herein not only on the sliding velocity but also on internal states. The probably best-known representative, the LuGre friction model, is based on a fictitious bristle but realizes a too-simple approximation. The recently published second-order dynamic friction model describes the dynamics of a fictitious bristle more accurately. It is based on a regularized friction force characteristic, which is continuous and smooth but can maintain long-term stick due to an appropriate shift in the regularization. Its performance is compared here to stick–slip friction models, developed and launched not long ago by commercial multibody software packages. The results obtained by a virtual friction test-bench and by a more practical festoon cable system are very promising. Thus, the second-order dynamic friction model may serve not only as an alternative to the LuGre model but also to commercial stick–slip models. KW - commercial stick–slip friction models KW - dynamic friction model KW - long-term stick KW - multibody dynamics Y1 - 2023 U6 - https://doi.org/10.3390/modelling4030021 SN - 2673-3951 N1 - Corresponding author: Georg Rill VL - 4 IS - 3 SP - 366 EP - 381 PB - MDPI ER - TY - INPR A1 - Rill, Georg A1 - Schuderer, Matthias T1 - A Second Order Dynamic Friction Model Compared to Commercial Stick-Slip Models N2 - Friction has long been an important issue in multibody dynamics. Static friction models apply appropriate regularization techniques to convert the stick inequality and the non-smooth stick-slip transition of Coulomb’s approach into a continuous and smooth function of the sliding velocity. However, a regularized friction force is not able to maintain long-term stick. That is why, dynamic friction models were developed in the last decades. The friction force depends herein not only on the sliding velocity but also on internal states. The probably best known representative, the LuGre friction model, is based on a fictitious bristle but realizes a too simple approximation. The recently published second order dynamic friction model describes the dynamics of a fictitious bristle more accurately. Its performance is compared here to stick-slip friction models, developed and launched not long ago by commercial multibody software packages. KW - dynamic friction model KW - commercial stick-slip friction models KW - long-term stick KW - multibody dynamics Y1 - 2023 U6 - https://doi.org/10.20944/preprints202306.1233.v1 ER -