TY - JOUR A1 - Laumer, Tobias A1 - Stichel, Thomas A1 - Raths, Max A1 - Schmidt, Michael T1 - Analysis of the Influence of Different Flowability on Part Characteristics Regarding the Simultaneous Laser Beam Melting of Polymers JF - Physics Procedia N2 - Powder based Additive Manufacturing technologies offer huge potential for building parts with almost no geometrical restrictions, but both the process controlling as well as the part properties are strongly dependent on different material characteristics of the material, like the flowability. In this work, different weight percentages of nano-scaled silica dioxide particles (AerosilĀ®) are admixed to pure polyethylene and polypropylene powder and the resulting flowability is determined. Besides using the Hausner ratio as standardized value, the degree of coverage is introduced as a new characteristic to quantify the powder flowability. The degrees of coverage are compared to the Hausner ratios to allow a discussion and evaluation about the different characteristic values. Additionally, tensile bars consisting of polypropylene are generated to determine the porosity by cross sections and the mechanical part properties by tensile testing. As mechanical part properties, the tensile strength and elongation at break are determined and the effects of different powder flowability on these properties are analyzed. KW - additive manufacturing KW - laser beam melting of polymers KW - material qualification Y1 - 2016 U6 - https://doi.org/10.1016/j.phpro.2016.08.098 SN - 1875-3892 SN - 1875-3884 VL - 83 SP - 937 EP - 946 PB - Elsevier ER - TY - JOUR A1 - Kuettner, Andreas A1 - Raths, Max A1 - Fischer, Samuel A1 - Laumer, Tobias T1 - Heat staking of polymer parts generated by fused layer modeling JF - The International Journal of Advanced Manufacturing Technology N2 - Heat staking is a joining technology by which thermoplastic pins are formed by force and temperature to create a form- and force-fitting connection between components. This paper examines the characteristics of 3D printed pins in comparison to conventionally turned pins for heat staking applications. The 3D printed pins are created using fused layer modeling, with variations in horizontal and vertical building directions, as well as different layer thicknesses. The study investigates the impact of significant factors on the heat staking process, including the forming force and temperature. Tensile tests, micrographs, and micro-CT measurements were conducted to determine the properties of the heat-staked joints. Additionally, a stage plan was developed to enhance the understanding of the forming process of both printed and conventionally turned materials. The findings suggest that, under specific process parameters, 3D printed pins exhibit comparable strength to conventionally manufactured pins. The research also demonstrates that the anisotropy resulting from the layer-by-layer construction of the pins significantly influences the strength of the connection. Furthermore, the study reveals that 3D printed pins exhibit good forming accuracy during the heat staking process, and the cavities formed during printing can be substantially reduced. KW - Heat staking KW - Additive manufacturing KW - 3D printing KW - Material qualification KW - Polycarbonate (PC) KW - Fused layer modeling (FLM) Y1 - 2023 U6 - https://doi.org/10.1007/s00170-023-11850-y PB - Springer Nature ER -