TY - BOOK A1 - Altmann, Robert A1 - Gebhard, Jürgen A1 - Emberger, Peter A1 - Thuneke, Klaus A1 - Rabl, Hans-Peter A1 - Remmele, Edgar T1 - Zünd- und Brennverhalten von Pflanzenölkraftstoff und Übertragung auf einen Motor der Abgasstufe V N2 - Durch den Ersatz von Dieselkraftstoff durch Rapsölkraftstoff (R100) können Treibhausgasemissionen reduziert werden. Für einen störungsfreien Betrieb eines Motors mit Rapsölkraftstoff sind jedoch Modifikationen an Motorkomponenten und Motorsteuergerät notwendig, um eine effiziente Verbrennung im Motor zu erreichen. Ziel des Vorhabens ist die Erarbeitung von Grundlagen zur Auslegung der Motorsteuerung pflanzenöltauglicher Offroad-Motoren mit moderner Abgasnachbehandlung mit anschließender entsprechender Abstimmung der Motorapplikation am Prüfstand. Grundlegende Untersuchungen der physikalischen Prozessabläufe von R100 bei der Einspritzung werden an einem hydraulischen Druckanstiegsanalysator (HDA) und einer Hochdruck-Hochtemperatur-Kammer (HDHT-Kammer) durchgeführt. Unterschiede im Zünd- und Brennverhalten werden in einer Konstantvolumenbrennkammer untersucht. Abschließend werden die Erkenntnisse am Motorenprüfstand auf einen DEUTZ-Motor übertragen, dessen Einspritzsystem auch bei den grundlegenden Untersuchungen verwendet wurde. Die Ergebnisse zeigen, dass das Einspritzverhalten von R100 eine höhere Sensitivität gegenüber Kraftstofftemperaturvariationen aufweist als Dieselkraftstoff. Bei niedrigen raftstofftemperaturen sind mit R100 ein längerer Öffnungsverzug und eine geringere Einspritzmenge festzustellen. Um diesen Einfluss bei der Einspritzstrategie zu kompensieren, ist die Kenntnis der Kraftstofftemperatur im Injektor notwendig. Eine weitere Herausforderung stellt die Gemischaufbereitung dar, hier führen unter anderem die höhere Viskosität und höhere Siedetemperaturen von R100 zu einem schmäleren Spritzwinkel und verzögerter Verdampfung im Vergleich zum Dieselkraftstoff. Eine Erhöhung des Einspritzdrucks und höhere Temperaturen und Drücke in der Brennkammer verbessern die Gemischaufbereitung. Bei Bedingungen von mittlerer und hoher Last ist der Zündverzug von R100 kürzer und das Verbrennungsverhalten ähnlich zum Dieselkraftstoff. Eine geringere Wärmefreisetzung von R100 wird durch den geringeren Heizwert verursacht. Unter Bedingungen von niedriger Last und Motorstart ist ein längerer Zündverzug von R100 im Vergleich zum Dieselkraftstoff festzustellen. Eine Steigerung des Einspritzdrucks und höhere Brennkammerdrücke und -temperaturen führen bei beiden Kraftstoffen zu kürzeren Zündverzügen, der Einfluss dieser Parameter ist jedoch für R100 stärker als für Dieselkraftstoff. Voreinspritzungen führen bei beiden Kraftstoffen zu einer Verkürzung des Zündverzugs der Haupteinspritzung und zu einer geringeren Wärmefreisetzungsrate. Am Motorprüfstand ist bei gleicher Motorapplikation mit R100 eine geringere Leistung als mit Dieselkraftstoff festzustellen. Nach Angleichung der Motorleistung durch Anhebung der Einspritzmenge von R100 sind im Rohabgas Stickstoffoxid (NOX)- und Kohlenstoffmonoxidemissionen auf gleichem Niveau zu Dieselkraftstoff zu beobachten sowie geringere Partikelemissionen. Unter Verwendung eines DoE Vorgehens kann der Partikel-NOX - trade-off von R100 optimiert und Einstellparameter gefunden werden, in denen sowohl niedrigere NOX als auch niedrigere Partikelemissionen im Vergleich zum Dieselkraftstoff resultieren. Das installierte Abgasnachbehandlungssystem, bestehend aus einem Dieseloxidationskatalysator (DOC), Dieselpartikelfilter (DPF) und selektivem katalytischem Reduktionssystem (SCR), arbeitet für beide Kraftstoffe ähnlich und es scheint keine Anpassung der Dosierungsstrategie der wässrigen Harnstofflösung notwendig zu sein. Eine Regeneration des Partikelfilters mit R100 war nach Optimierung der Einstellparameter der Drosselklappe möglich. Motorkaltstart und Leerlauf sind herausfordernde Betriebsphasen, die für R100 einer weiteren Optimierung bedürfen. Eine Temperierung von R100 im Injektor auf 50–60 °C sowie eine Kompensation der Einspritzmenge in Abhängigkeit von der Kraftstofftemperatur sind mögliche Verbesserungsmaßnahmen. Zudem kann durch einen früheren Einspritzbeginn von R100 das Verbrennungsverhalten angepasst werden. Die Motorprüfstandsuntersuchungen bestätigen qualitativ die Erkenntnisse die mit dem hydraulischen Druckanstiegsanalysator (HDA), der Hochdruck-Hochtemperatur-Kammer (HDHT-Kammer) und der Konstantvolumenbrennkammer gewonnen wurden. Weitere Untersuchungen sind notwendig, um die Ergebnisse auf einen baugleichen, in einer mobilen Arbeitsmaschine eingebauten Motor zu transferieren, damit Informationen zur Dauerhaltbarkeit unter realen Bedingungen erhalten werden können. Weiterführende Forschungsarbeiten sind im Bereich der Betriebsphasen des Motorkaltstarts und Leerlaufs mit Rapsölkraftstoff nötig, um einen dauerhaft störungsfreien Betrieb in diesen Betriebsphasen zu erreichen. Die erzielten Erkenntnisse deuten darauf hin, dass hier noch viel Verbesserungspotenzial vorhanden ist. KW - Biokraftstoff KW - Brennwert KW - Zündung KW - Motor KW - Rapsöl KW - Motorsteuerung Y1 - 2020 UR - https://www.tfz.bayern.de/mam/cms08/biokraftstoffe/dateien/tfz_bericht_69_evolum_a.pdf SN - 1614-1008 VL - 69 PB - Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe CY - Straubing ER - TY - JOUR A1 - Emberger, Peter A1 - Altmann, Robert A1 - Gebhard, Jürgen A1 - Thuneke, Klaus A1 - Winkler, Markus A1 - Töpfer, Georg A1 - Rabl, Hans-Peter A1 - Remmele, Edgar T1 - Combustion characteristics of pure rapeseed oil fuel after injection in a constant volume combustion chamber with a non-road mobile machinery engine solenoid injector JF - Fuel N2 - Pure rapeseed oil fuel (R100) according to standard DIN 51605 is a greenhouse gas saving option for the mobility sector. With its high energy density close to diesel fuel, R100 is suitable to operate non-road mobile machinery with a high power demand and long operating time, where electric drives reach their limits. Advantages are indicated for its use in environmentally sensitive areas like agriculture since R100 is highly biodegradable and non-toxic. However, R100 is characterised by differing physical and chemical properties compared to diesel. The objective of the research is to investigate the differences in the ignition and combustion behaviour of R100 compared to diesel fuel (DF). For this purpose, a constant volume combustion chamber is used, which is equipped with a modern solenoid injector for engines of non-road mobile machinery. The researched injector shows a different hydraulic behaviour when using R100 compared to DF in that the injected fuel mass is lower with R100 than with DF. In combination with the 14 % by mass lower calorific value, less energy output is determined with R100. When varying the injection pressure, the impact on the ignition delay and combustion behaviour is much higher for R100 than for DF. Specifically, an increase of the injection pressure supports mixture preparation and thus partially compensates the differing physical properties of R100. The results of ignition delay measurements and net heat release analysis are as follows: At low load conditions with low injection pressure as well as a low combustion chamber temperature and pressure, R100 ignites later and shows a further delayed combustion compared to diesel. The opposite is observed for medium and high load conditions, where R100 ignites faster and without delayed combustion in comparison to DF. Thus, an adjustment of the heat release of R100 at the same level as for DF is possible by modifying the injection strategy. The research shows that for an optimised combustion of R100 the injection settings must be adjusted for every operation point separately. The results indicate how the injection parameters should be adjusted for different load conditions to realise a high-quality engine calibration for R100. KW - Constant volume combustion chamber KW - Ignition behaviour KW - Non-road mobile machinery KW - Rapeseed oil fuel KW - Solenoid injector KW - Straight vegetable oil fuel Y1 - 2022 U6 - https://doi.org/10.1016/j.fuel.2022.123979 IS - 320 PB - Elsevier ER -