TY - INPR A1 - Pangerl, Jonas A1 - Sukul, Pritam A1 - Rück, Thomas A1 - Fuchs, Patricia A1 - Weigl, Stefan A1 - Miekisch, Wolfram A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - An Inexpensive Uv-Led Photoacoustic Based Real-Time Sensor-System Detecting Exhaled Trace-Acetone N2 - In this research we present a low-cost system for breath acetone analysis based on UV-LED photoacoustic spectroscopy. We considered the end-tidal phase of exhalation, which represents the systemic concentrations of volatile organic compounds (VOCs) – providing clinically relevant information about the human health. This is achieved via the development of a CO2-triggered breath sampling system, which collected alveolar breath over several minutes in sterile and inert containers. A real-time mass spectrometer is coupled to serve as a reference device for calibration measurements and subsequent breath analysis. The new sensor system provided a 3σ detection limit of 6.4 ppbV and an NNEA of 1.1E-9 Wcm-1Hz-0.5. In terms of the performed breath analysis measurements, 12 out of 13 fell within the error margin of the photoacoustic measurement system, demonstrating the reliability of the measurements in the field. KW - photoacoustic spectroscopy KW - real-time mass-spectrometry KW - breath analysis KW - acetone KW - UV-LED Y1 - 2024 U6 - https://doi.org/10.2139/ssrn.4724198 N1 - Der Aufsatz wurde peer-reviewed unter folgender DOI veröffentlicht: https://doi.org/10.1016/j.pacs.2024.100604 PB - Elsevier ER -