TY - JOUR A1 - Chatzitakis, Paris A1 - Dawoud, Belal T1 - An alternative approach towards absorption heat pump working pair screening JF - Renewable Energy N2 - The successful market penetration of modern absorption heat pumps (AHP) today is critically dependent on their thermodynamic performance as well as other key factors like cost, reliability and inherent safety. Conventional AHPs have a proven record in the first two aspects but crucial shortcomings in the last two. For this reason it has been imperative to search for alternative working pairs that could potentially provide comparable performance while also satisfying the rest of the conditions to the best extent possible. As part of a systematic approach towards this direction, a detailed cycle analysis was performed, utilizing an idealized AHP system containing a real working pair, which enabled the identification of five dimensionless parameters and key thermophysical properties that influence the system's thermodynamic efficiency and the circulation ratio. In order to validate those findings, these parameters were calculated and compared between conventional and alternative AHP refrigerants. It turned out that low molecular weight ratios between absorbent and refrigerant have a beneficial effect on both coefficient of performance and the circulation ratio. Furthermore, both the refrigerant acentric factor and the absorbent vaporization enthalpy shall be minimized to obtain better performance. (C) 2016 Elsevier Ltd. All rights reserved. KW - Absorption heat pump KW - Coefficient of performance KW - FLUIDS KW - Working pair Y1 - 2017 U6 - https://doi.org/10.1016/j.renene.2016.08.014 VL - 110 SP - 47 EP - 58 PB - Pergamon-Elsevier ER - TY - JOUR A1 - Chatzitakis, Paris A1 - Safarov, Javid A1 - Opferkuch, Frank A1 - Dawoud, Belal A1 - Hassel, Egon T1 - Vapor pressures and activity coefficients of 2,2,2-trifluoroethanol in binary mixtures with 1,3-dimethyl-2-imidazolidinone and 2-pyrrolidone JF - Journal of Molecular Liquids N2 - The vapor pressures of two binary mixtures containing 2-trifluoroethanol (TFE) + 1,3-dimethyl-2-imidazolidinone (DMI) and TFE + 2-pyrrolidone (PYR), were investigated at temperatures T = (274.15 to 423.15) K using two different static method installations. Both combinations were modelled using an extended Clausius-Clapeyron equation with concentration dependent parameters and the NRTL equation with temperature dependent parameters. The best fit was obtained using the NRTL equation. KW - 2-Trifluoroethanol KW - 1,3-Dimethyl-2-imidazolidinone KW - 2-Pyrrolidone KW - Vapor pressure KW - NRTL KW - Clausius-Clapeyron Y1 - 2020 U6 - https://doi.org/10.1016/j.molliq.2020.112828 SN - 0167-7322 VL - 305 IS - May PB - Elsevier ER - TY - JOUR A1 - Chatzitakis, Paris A1 - Safarov, Javid A1 - Opferkuch, F. A1 - Dawoud, Belal T1 - Experimental investigation of an absorption heat pump with organic working pairs JF - Applied Thermal Engineering N2 - As part of a systematic approach towards the search for alternative absorption heat pump (AHP) working pairs that could potentially provide comparable performance to conventional ones, a previous work performed a detailed theoretical cycle analysis and simulation that revealed concrete correlations between key working fluid thermophysical properties and AHP performance indicators. Following this work, targeted combinations of two organic refrigerants, 2,2,2-trifluoroethanol (TFE) and 2,2,3,3,3-pentafluoropropanol (5FP) and two organic absorbents, 1,3-dimethyl-2-imidazolidinone (DMI) and 2-pyrrolidone (PYR) were tested in a prototype 5 kW AHP, based on a highly compact plate heat exchanger design, which has been previously introduced. The purpose of this effort was to test the findings of the previous work with experimental measurements. The working pair combinations were also subjected to vapor liquid equilibrium (VLE) and viscosity measurements, in order to determine reliable activity coefficient and improve the accuracy of the simulations. The experimental performance data agree well with the COP simulations and show to be consistent with the conclusions derived from the previous theoretical work. KW - Absorption heat pump KW - Coefficient of performance KW - FLUID KW - MIXTURES KW - Organic working pairs KW - Specific solution circulation Y1 - 2019 U6 - https://doi.org/10.1016/j.applthermaleng.2019.114311 VL - 163 IS - December PB - Elsevier ER -