TY - JOUR A1 - Maier, Andreas A1 - Deserno, Thomas M. A1 - Handels, Heinz A1 - Maier-Hein, Klaus H. A1 - Palm, Christoph A1 - Tolxdorff, Thomas T1 - IJCARS: BVM 2021 special issue JF - International Journal of Computer Assisted Radiology and Surgery N2 - The German workshop on medical image computing (BVM) has been held in different locations in Germany for more than 20 years. In terms of content, BVM focused on the computer-aided analysis of medical image data with a wide range of applications, e.g. in the area of imaging, diagnostics, operation planning, computer-aided intervention and visualization. During this time, there have been remarkable methodological developments and upheavals, on which the BVM community has worked intensively. The area of machine learning should be emphasized, which has led to significant improvements, especially for tasks of classification and segmentation, but increasingly also in image formation and registration. As a result, work in connection with deep learning now dominates the BVM. These developments have also contributed to the establishment of medical image processing at the interface between computer science and medicine as one of the key technologies for the digitization of the health system. In addition to the presentation of current research results, a central aspect of the BVM is primarily the promotion of young scientists from the diverse BVM community, covering not only Germany but also Austria, Switzerland, The Netherland and other European neighbors. The conference serves primarily doctoral students and postdocs, but also students with excellent bachelor and master theses as a platform to present their work, to enter into professional discourse with the community, and to establish networks with specialist colleagues. Despite the many conferences and congresses that are also relevant for medical image processing, the BVM has therefore lost none of its importance and attractiveness and has retained its permanent place in the annual conference rhythm. Building on this foundation, there are some innovations and changes this year. The BVM 2021 was organized for the first time at the Ostbayerische Technische Hochschule Regensburg (OTH Regensburg, a technical university of applied sciences). After Aachen, Berlin, Erlangen, Freiburg, Hamburg, Heidelberg, Leipzig, Lübeck, and Munich, Regensburg is not just a new venue. OTH Regensburg is the first representative of the universities of applied sciences (HAW) to organize the conference, which differs to universities, university hospitals, or research centers like Fraunhofer or Helmholtz. This also considers the further development of the research landscape in Germany, where HAWs increasingly contribute to applied research in addition to their focus on teaching. This development is also reflected in the contributions submitted to the BVM in recent years. At BVM 2021, which was held in a virtual format for the first time due to the Corona pandemic, an attractive and high-quality program was offered. Fortunately, the number of submissions increased significantly. Out of 97 submissions, 26 presentations, 51 posters and 5 software demonstrations were accepted via an anonymized reviewing process with three reviews each. The three best works have been awarded BVM prizes, selected by a separate committee. Based on these high-quality submissions, we are able to present another special issue in the International Journal of Computer Assisted Radiology and Surgery (IJCARS). Out of the 97 submissions, the ones with the highest scores have been invited to submit an extended version of their paper to be presented in IJCARS. As a result, we are now able to present this special issue with seven excellent articles. Many submissions focus on machine learning in a medical context. KW - Medical Image Computing KW - Bildgebendes Verfahren KW - Medizin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-21666 VL - 16 SP - 2067 EP - 2068 PB - Springer ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Barrett esophagus: What to expect from Artificial Intelligence? JF - Best Practice & Research Clinical Gastroenterology N2 - The evaluation and assessment of Barrett’s esophagus is challenging for both expert and nonexpert endoscopists. However, the early diagnosis of cancer in Barrett’s esophagus is crucial for its prognosis, and could save costs. Pre-clinical and clinical studies on the application of Artificial Intelligence (AI) in Barrett’s esophagus have shown promising results. In this review, we focus on the current challenges and future perspectives of implementing AI systems in the management of patients with Barrett’s esophagus. KW - Deep Learning KW - Künstliche Intelligenz KW - Computerunterstützte Medizin KW - Barrett KW - Adenocarcinoma KW - Artificial intelligence KW - Deep learning KW - Convolutional neural networks Y1 - 2021 U6 - https://doi.org/10.1016/j.bpg.2021.101726 SN - 1521-6918 VL - 52-53 IS - June-August PB - Elsevier ER - TY - JOUR A1 - Arribas, Julia A1 - Antonelli, Giulio A1 - Frazzoni, Leonardo A1 - Fuccio, Lorenzo A1 - Ebigbo, Alanna A1 - van der Sommen, Fons A1 - Ghatwary, Noha A1 - Palm, Christoph A1 - Coimbra, Miguel A1 - Renna, Francesco A1 - Bergman, Jacques J.G.H.M. A1 - Sharma, Prateek A1 - Messmann, Helmut A1 - Hassan, Cesare A1 - Dinis-Ribeiro, Mario J. T1 - Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis JF - Gut N2 - Objective: Artificial intelligence (AI) may reduce underdiagnosed or overlooked upper GI (UGI) neoplastic and preneoplastic conditions, due to subtle appearance and low disease prevalence. Only disease-specific AI performances have been reported, generating uncertainty on its clinical value. Design: We searched PubMed, Embase and Scopus until July 2020, for studies on the diagnostic performance of AI in detection and characterisation of UGI lesions. Primary outcomes were pooled diagnostic accuracy, sensitivity and specificity of AI. Secondary outcomes were pooled positive (PPV) and negative (NPV) predictive values. We calculated pooled proportion rates (%), designed summary receiving operating characteristic curves with respective area under the curves (AUCs) and performed metaregression and sensitivity analysis. Results: Overall, 19 studies on detection of oesophageal squamous cell neoplasia (ESCN) or Barrett's esophagus-related neoplasia (BERN) or gastric adenocarcinoma (GCA) were included with 218, 445, 453 patients and 7976, 2340, 13 562 images, respectively. AI-sensitivity/specificity/PPV/NPV/positive likelihood ratio/negative likelihood ratio for UGI neoplasia detection were 90% (CI 85% to 94%)/89% (CI 85% to 92%)/87% (CI 83% to 91%)/91% (CI 87% to 94%)/8.2 (CI 5.7 to 11.7)/0.111 (CI 0.071 to 0.175), respectively, with an overall AUC of 0.95 (CI 0.93 to 0.97). No difference in AI performance across ESCN, BERN and GCA was found, AUC being 0.94 (CI 0.52 to 0.99), 0.96 (CI 0.95 to 0.98), 0.93 (CI 0.83 to 0.99), respectively. Overall, study quality was low, with high risk of selection bias. No significant publication bias was found. Conclusion: We found a high overall AI accuracy for the diagnosis of any neoplastic lesion of the UGI tract that was independent of the underlying condition. This may be expected to substantially reduce the miss rate of precancerous lesions and early cancer when implemented in clinical practice. KW - Artificial Intelligence Y1 - 2021 U6 - https://doi.org/10.1136/gutjnl-2020-321922 VL - 70 IS - 8 SP - 1458 EP - 1468 PB - BMJ CY - London ER - TY - JOUR A1 - Hartmann, Robin A1 - Weiherer, Maximilian A1 - Schiltz, Daniel A1 - Baringer, Magnus A1 - Noisser, Vivien A1 - Hösl, Vanessa A1 - Eigenberger, Andreas A1 - Seitz, Stefan A1 - Palm, Christoph A1 - Prantl, Lukas A1 - Brébant, Vanessa T1 - New aspects in digital breast assessment: further refinement of a method for automated digital anthropometry JF - Archives of Gynecology and Obstetrics N2 - Purpose: In this trial, we used a previously developed prototype software to assess aesthetic results after reconstructive surgery for congenital breast asymmetry using automated anthropometry. To prove the consensus between the manual and automatic digital measurements, we evaluated the software by comparing the manual and automatic measurements of 46 breasts. Methods: Twenty-three patients who underwent reconstructive surgery for congenital breast asymmetry at our institution were examined and underwent 3D surface imaging. Per patient, 14 manual and 14 computer-based anthropometric measurements were obtained according to a standardized protocol. Manual and automatic measurements, as well as the previously proposed Symmetry Index (SI), were compared. Results: The Wilcoxon signed-rank test revealed no significant differences in six of the seven measurements between the automatic and manual assessments. The SI showed robust agreement between the automatic and manual methods. Conclusion: The present trial validates our method for digital anthropometry. Despite the discrepancy in one measurement, all remaining measurements, including the SI, showed high agreement between the manual and automatic methods. The proposed data bring us one step closer to the long-term goal of establishing robust instruments to evaluate the results of breast surgery. KW - digital anthropometry KW - reconstructive surgery KW - 3D surface imaging Y1 - 2021 U6 - https://doi.org/10.1007/s00404-020-05862-2 SN - 1432-0711 VL - 303 SP - 721 EP - 728 PB - Springer Nature CY - Heidelberg ER - TY - JOUR A1 - De Souza Jr., Luis Antonio A1 - Mendel, Robert A1 - Strasser, Sophia A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Papa, João Paulo A1 - Palm, Christoph T1 - Convolutional Neural Networks for the evaluation of cancer in Barrett’s esophagus: Explainable AI to lighten up the black-box JF - Computers in Biology and Medicine N2 - Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their level of accountability and transparency must be provided in such evaluations. The reliability related to machine learning predictions must be explained and interpreted, especially if diagnosis support is addressed. For this task, the black-box nature of deep learning techniques must be lightened up to transfer its promising results into clinical practice. Hence, we aim to investigate the use of explainable artificial intelligence techniques to quantitatively highlight discriminative regions during the classification of earlycancerous tissues in Barrett’s esophagus-diagnosed patients. Four Convolutional Neural Network models (AlexNet, SqueezeNet, ResNet50, and VGG16) were analyzed using five different interpretation techniques (saliency, guided backpropagation, integrated gradients, input × gradients, and DeepLIFT) to compare their agreement with experts’ previous annotations of cancerous tissue. We could show that saliency attributes match best with the manual experts’ delineations. Moreover, there is moderate to high correlation between the sensitivity of a model and the human-and-computer agreement. The results also lightened that the higher the model’s sensitivity, the stronger the correlation of human and computational segmentation agreement. We observed a relevant relation between computational learning and experts’ insights, demonstrating how human knowledge may influence the correct computational learning. KW - Deep Learning KW - Künstliche Intelligenz KW - Computerunterstützte Medizin KW - Barrett's esophagus KW - Adenocarcinoma KW - Machine learning KW - Explainable artificial intelligence KW - Computer-aided diagnosis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-20126 SN - 0010-4825 VL - 135 SP - 1 EP - 14 PB - Elsevier ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Rückert, Tobias A1 - Schuster, Laurin A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - Mende, Matthias A1 - Steinbrück, Ingo A1 - Faiss, Siegbert A1 - Rauber, David A1 - De Souza Jr., Luis Antonio A1 - Papa, João Paulo A1 - Deprez, Pierre A1 - Oyama, Tsuneo A1 - Takahashi, Akiko A1 - Seewald, Stefan A1 - Sharma, Prateek A1 - Byrne, Michael F. A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Endoscopic prediction of submucosal invasion in Barrett’s cancer with the use of Artificial Intelligence: A pilot Study JF - Endoscopy N2 - Background and aims: The accurate differentiation between T1a and T1b Barrett’s cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an Artificial Intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett’s cancer white-light images. Methods: Endoscopic images from three tertiary care centres in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross-validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) was evaluated with the AI-system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett’s cancer. Results: The sensitivity, specificity, F1 and accuracy of the AI-system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.73 and 0.71, respectively. There was no statistically significant difference between the performance of the AI-system and that of human experts with sensitivity, specificity, F1 and accuracy of 0.63, 0.78, 0.67 and 0.70 respectively. Conclusion: This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett’s cancer. AI scored equal to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and in a real-life setting. Nevertheless, the correct prediction of submucosal invasion in Barret´s cancer remains challenging for both experts and AI. KW - Maschinelles Lernen KW - Neuronales Netz KW - Speiseröhrenkrebs KW - Diagnose KW - Artificial Intelligence KW - Machine learning KW - Adenocarcinoma KW - Barrett’s cancer KW - submucosal invasion Y1 - 2021 U6 - https://doi.org/10.1055/a-1311-8570 VL - 53 IS - 09 SP - 878 EP - 883 PB - Thieme CY - Stuttgart ER -