TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Scheppach, Markus W. A1 - Probst, Andreas A1 - Prinz, Friederike A1 - Schwamberger, Tanja A1 - Schlottmann, Jakob A1 - Gölder, Stefan Karl A1 - Walter, Benjamin A1 - Steinbrück, Ingo A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - INFLUENCE OF AN ARTIFICIAL INTELLIGENCE (AI) BASED DECISION SUPPORT SYSTEM (DSS) ON THE DIAGNOSTIC PERFORMANCE OF NON-EXPERTS IN BARRETT´S ESOPHAGUS RELATED NEOPLASIA (BERN) T2 - Endoscopy N2 - Aims Barrett´s esophagus related neoplasia (BERN) is difficult to detect and characterize during endoscopy, even for expert endoscopists. We aimed to assess the add-on effect of an Artificial Intelligence (AI) algorithm (Barrett-Ampel) as a decision support system (DSS) for non-expert endoscopists in the evaluation of Barrett’s esophagus (BE) and BERN. Methods Twelve videos with multimodal imaging white light (WL), narrow-band imaging (NBI), texture and color enhanced imaging (TXI) of histologically confirmed BE and BERN were assessed by expert and non-expert endoscopists. For each video, endoscopists were asked to identify the area of BERN and decide on the biopsy spot. Videos were assessed by the AI algorithm and regions of BERN were highlighted in real-time by a transparent overlay. Finally, endoscopists were shown the AI videos and asked to either confirm or change their initial decision based on the AI support. Results Barrett-Ampel correctly identified all areas of BERN, irrespective of the imaging modality (WL, NBI, TXI), but misinterpreted two inflammatory lesions (Accuracy=75%). Expert endoscopists had a similar performance (Accuracy=70,8%), while non-experts had an accuracy of 58.3%. When AI was implemented as a DSS, non-expert endoscopists improved their diagnostic accuracy to 75%. Conclusions AI may have the potential to support non-expert endoscopists in the assessment of videos of BE and BERN. Limitations of this study include the low number of videos used. Randomized clinical trials in a real-life setting should be performed to confirm these results. KW - Artificial Intelligence KW - Barrett's Esophagus KW - Speiseröhrenkrankheit KW - Künstliche Intelligenz KW - Diagnose Y1 - 2022 U6 - https://doi.org/10.1055/s-00000012 VL - 54 IS - S 01 SP - S39 PB - Thieme ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Rauber, David A1 - Rueckert, Tobias A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Real-time detection and delineation of tissue during third-space endoscopy using artificial intelligence (AI) T2 - Endoscopy N2 - Aims  AI has proven great potential in assisting endoscopists in diagnostics, however its role in therapeutic endoscopy remains unclear. Endoscopic submucosal dissection (ESD) is a technically demanding intervention with a slow learning curve and relevant risks like bleeding and perforation. Therefore, we aimed to develop an algorithm for the real-time detection and delineation of relevant structures during third-space endoscopy. Methods  5470 still images from 59 full length videos (47 ESD, 12 POEM) were annotated. 179681 additional unlabeled images were added to the training dataset. Consequently, a DeepLabv3+ neural network architecture was trained with the ECMT semi-supervised algorithm (under review elsewhere). Evaluation of vessel detection was performed on a dataset of 101 standardized video clips from 15 separate third-space endoscopy videos with 200 predefined blood vessels. Results  Internal validation yielded an overall mean Dice score of 85% (68% for blood vessels, 86% for submucosal layer, 88% for muscle layer). On the video test data, the overall vessel detection rate (VDR) was 94% (96% for ESD, 74% for POEM). The median overall vessel detection time (VDT) was 0.32 sec (0.3 sec for ESD, 0.62 sec for POEM). Conclusions  Evaluation of the developed algorithm on a video test dataset showed high VDR and quick VDT, especially for ESD. Further research will focus on a possible clinical benefit of the AI application for VDR and VDT during third-space endoscopy. KW - Speiseröhrenkrankheit KW - Künstliche Intelligenz KW - Artificial Intelligence Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1765128 VL - 55 IS - S02 SP - S53 EP - S54 PB - Thieme ER - TY - GEN A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Artificial Intelligence in Early Barrett's Cancer: The Segmentation Task T2 - Endoscopy N2 - Aims: The delineation of outer margins of early Barrett's cancer can be challenging even for experienced endoscopists. Artificial intelligence (AI) could assist endoscopists faced with this task. As of date, there is very limited experience in this domain. In this study, we demonstrate the measure of overlap (Dice coefficient = D) between highly experienced Barrett endoscopists and an AI system in the delineation of cancer margins (segmentation task). Methods: An AI system with a deep convolutional neural network (CNN) was trained and tested on high-definition endoscopic images of early Barrett's cancer (n = 33) and normal Barrett's mucosa (n = 41). The reference standard for the segmentation task were the manual delineations of tumor margins by three highly experienced Barrett endoscopists. Training of the AI system included patch generation, patch augmentation and adjustment of the CNN weights. Then, the segmentation results from patch classification and thresholding of the class probabilities. Segmentation results were evaluated using the Dice coefficient (D). Results: The Dice coefficient (D) which can range between 0 (no overlap) and 1 (complete overlap) was computed only for images correctly classified by the AI-system as cancerous. At a threshold of t = 0.5, a mean value of D = 0.72 was computed. Conclusions: AI with CNN performed reasonably well in the segmentation of the tumor region in Barrett's cancer, at least when compared with expert Barrett's endoscopists. AI holds a lot of promise as a tool for better visualization of tumor margins but may need further improvement and enhancement especially in real-time settings. KW - Speiseröhrenkrankheit KW - Maschinelles Lernen KW - Barrett's esphagus KW - Deep Learning KW - Segmentation Y1 - 2019 U6 - https://doi.org/10.1055/s-0039-1681187 VL - 51 IS - 04 SP - 6 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus JF - Gut N2 - Based on previous work by our group with manual annotation of visible Barrett oesophagus (BE) cancer images, a real-time deep learning artificial intelligence (AI) system was developed. While an expert endoscopist conducts the endoscopic assessment of BE, our AI system captures random images from the real-time camera livestream and provides a global prediction (classification), as well as a dense prediction (segmentation) differentiating accurately between normal BE and early oesophageal adenocarcinoma (EAC). The AI system showed an accuracy of 89.9% on 14 cases with neoplastic BE. KW - Speiseröhrenkrankheit KW - Diagnose KW - Maschinelles Lernen KW - Barrett's esophagus KW - Deep learning KW - real-time Y1 - 2020 U6 - https://doi.org/10.1136/gutjnl-2019-319460 VL - 69 IS - 4 SP - 615 EP - 616 PB - BMJ CY - London ER - TY - JOUR A1 - Souza Jr., Luis Antonio de A1 - Palm, Christoph A1 - Mendel, Robert A1 - Hook, Christian A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Weber, Silke A. T. A1 - Papa, João Paulo T1 - A survey on Barrett's esophagus analysis using machine learning JF - Computers in Biology and Medicine N2 - This work presents a systematic review concerning recent studies and technologies of machine learning for Barrett's esophagus (BE) diagnosis and treatment. The use of artificial intelligence is a brand new and promising way to evaluate such disease. We compile some works published at some well-established databases, such as Science Direct, IEEEXplore, PubMed, Plos One, Multidisciplinary Digital Publishing Institute (MDPI), Association for Computing Machinery (ACM), Springer, and Hindawi Publishing Corporation. Each selected work has been analyzed to present its objective, methodology, and results. The BE progression to dysplasia or adenocarcinoma shows a complex pattern to be detected during endoscopic surveillance. Therefore, it is valuable to assist its diagnosis and automatic identification using computer analysis. The evaluation of the BE dysplasia can be performed through manual or automated segmentation through machine learning techniques. Finally, in this survey, we reviewed recent studies focused on the automatic detection of the neoplastic region for classification purposes using machine learning methods. KW - Speiseröhrenkrankheit KW - Diagnose KW - Mustererkennung KW - Maschinelles Lernen KW - Literaturbericht KW - Barrett's esophagus KW - Machine learning KW - Adenocarcinoma KW - Image processing KW - Pattern recognition KW - Computer-aided diagnosis Y1 - 2018 U6 - https://doi.org/10.1016/j.compbiomed.2018.03.014 VL - 96 SP - 203 EP - 213 PB - Elsevier ER - TY - JOUR A1 - Passos, Leandro A. A1 - Souza Jr., Luis Antonio de A1 - Mendel, Robert A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Papa, João Paulo T1 - Barrett's esophagus analysis using infinity Restricted Boltzmann Machines JF - Journal of Visual Communication and Image Representation N2 - The number of patients with Barret’s esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett’s esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task. KW - Speiseröhrenkrankheit KW - Diagnose KW - Boltzmann-Maschine KW - Barrett’s esophagus KW - Infinity Restricted Boltzmann Machines KW - Meta-heuristics KW - Deep learning KW - Metaheuristik KW - Maschinelles Lernen Y1 - 2019 U6 - https://doi.org/10.1016/j.jvcir.2019.01.043 VL - 59 SP - 475 EP - 485 PB - Elsevier ER -