TY - JOUR A1 - Hornberger, Helga A1 - Witte, Frank A1 - Hort, Norbert A1 - Müller, Wolf-Dieter T1 - Effect of fetal calf serum on the corrosion behaviour of magnesium alloys JF - Materials Science and Engineering B N2 - The corrosion behaviour of WE43 magnesium alloys using the mini cell system was studied. Voltammetry and impedance spectroscopy were applied to study on the one hand the effect of microstructure of the working electrode and on the other hand the effect of proteins in the electrolyte. Two types of alloy samples were produced (i) by permanent mould casting and (ii) by gas atomization followed by extrusion. The results showed that the microstructure was strongly influenced by the production process. The extruded samples showed an improved homogeneity of phase distribution compared with cast samples as it was aimed for. Due to increased homogeneity it was expected to find higher corrosion resistance. However, the electrochemical results are contradictory and suggest an additional phase in the extruded microstructure. Using energy dispersive X-ray spectroscopy (EDX) the secondary magnesium rare earths (RE) phase of extruded samples showed differing composition than of cast samples as well as additional oxide phases. After the samples were electrochemically investigated in cell medium with and without fetal calf serum (FCS), an impact of FCS was detected in voltammetry due to the length of the polarisation curve. As the tip of the mini cell in contact with the working electrode is small, developing gases tend to spread on the working electrode and break the contact of liquid to the counter electrode; which results in disrupting the current flow. This effect was more pronounced when rising the voltage and was found reduced when using electrolytes with FCS. Impedance spectra were slightly deformed by FCS, seen as a kinetic effect but not as a basic differing corrosion reaction. The insight into the effects of FCS was provided by the mini cell system as this system enables to collect entire series of measurements. In contrast of two single measurements, those series reflected the slight difference caused by FCS. The focus of the electrochemical corrosion study was set on the first half hour of immersion. KW - Magnesium KW - Corrosion KW - Proteins KW - Impedance KW - Reproducibility KW - Polarization Y1 - 2011 U6 - https://doi.org/10.1016/j.mseb.2011.07.018 VL - 176 IS - 29 SP - 1746 EP - 1755 ER - TY - JOUR A1 - Kloiber, Jessica A1 - Schultheiß, Ulrich A1 - Sotelo, Lamborghini A1 - Sarau, George A1 - Christiansen, Silke A1 - Gavras, Sarkis A1 - Hort, Norbert A1 - Hornberger, Helga T1 - Corrosion behaviour of electropolished magnesium materials JF - Materials Today Communications N2 - Although magnesium and its alloys are promising candidates as biodegradable implant materials, the tendency for localized corrosion mechanism in physiological environment limit their biomedical application. Electropolishing is an attractive strategy for improving the corrosion behaviour of metals, but it is still largely unexplored in magnesium materials. In this study, the characterization of electropolished surfaces of AM50 and pure magnesium was performed, focussing on their in vitro degradation behaviour in cell medium. Corrosion rates were evaluated using potentiodynamic polarisation. The surface morphology before and after the onset of corrosion was investigated by scanning electron microscopy and confocal laser scanning microscopy. The presented electropolishing process led to improved surface performances, observable by significantly lower corrosion rates (0.08 mm·year-1 in Dulbecco's modified Eagle's medium), lower arithmetical mean height (0.05 µm), lower water contact angle (25-35°) and lower micro hardness (35-50 HV 0.1) compared to mechanically and chemically treated surfaces. MgO/Mg(OH)2 could be detected on electropolished surfaces. The localized corrosion mode could be reduced, but not entirely prevented. Electropolishing shows great potential as post-treatment of magnesium-based components, but detailed tests of the long-term corrosion behaviour are an important area of future research. KW - biomedical application KW - corrosion behaviour KW - electropolishing KW - magnesium alloy KW - pure magnesium KW - surface characterization Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-68254 N1 - Corresponding author: Helga Hornberger PB - Elsevier ET - Journal Pre-proof ER -