TY - JOUR A1 - Kastenmeier, Andreas A1 - Siegl, Marco A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert T1 - Review of elasto-static models for three-dimensional analysis of thick-walled anisotropic tubes JF - Journal of Composite Materials N2 - Most shell or beam models of anisotropic tubes under bending have no validity for thick-walled structures. As a result, the need to develop three-dimensional formulations which allow a change in the stress, strain and displacement distributions across the radial component arises. Basic formulations on three-dimensional anisotropic elasticity were made either stressor displacement-based by Lekhnitskii or Stroh on plates. Lekhnitskii also was the first to expand these analytical formulations to tubes under various loading conditions. This paper presents a review of the stress and strain analysis of tube models using three-dimensional anisotropic elasticity. The focus lies on layered structures, like fiber-reinforced plastics, under various bending loads, although the basic formulations and models regarding axisymmetric loads are briefly discussed. One section is also dedicated to the determination of an equivalent bending stiffness of tubes. KW - composite tube bending KW - layered structrues KW - anisotropy KW - Analytical modelling KW - elasticity Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-67521 N1 - Corresponding author: Andreas Kastenmeier PB - Sage ER - TY - JOUR A1 - Putzer, Michael A1 - Ehrlich, Ingo A1 - Rasmussen, John A1 - Gebbeken, Norbert A1 - Dendorfer, Sebastian T1 - Sensitivity of lumbar spine loading to anatomical parameters JF - Journal of Biomechanics N2 - Musculoskeletal simulations of lumbar spine loading rely on a geometrical representation of the anatomy. However, this data has an inherent inaccuracy. This study evaluates the influence of defined geometrical parameters on lumbar spine loading utilising five parametrised musculoskeletal lumbar spine models for four different postures. The influence of the dimensions of vertebral body, disc, posterior parts of the vertebrae as well as the curvature of the lumbar spine was studied. Additionally, simulations with combinations of selected parameters were conducted. Changes in L4/L5 resultant joint force were used as outcome variable. Variations of the vertebral body height, disc height, transverse process width and the curvature of the lumbar spine were the most influential. These parameters can be easily acquired from X-rays and should be used to morph a musculoskeletal lumbar spine model for subject-specific approaches with respect to bone geometry. Furthermore, the model was very sensitive to uncommon configurations and therefore, it is advised that stiffness properties of discs and ligaments should be individualised. KW - Musculoskeletal simulation KW - Lumbar spine KW - Parameter study KW - Vertebra KW - Wirbelsäule KW - Belastung KW - Simulation Y1 - 2015 U6 - https://doi.org/10.1016/j.jbiomech.2015.11.003 VL - 49 IS - 6 SP - 953 EP - 958 PB - Elsevier Science ER - TY - CHAP A1 - Putzer, Michael A1 - Penzkofer, Rainer A1 - Ehrlich, Ingo A1 - Rasmussen, John A1 - Gebbeken, Norbert A1 - Dendorfer, Sebastian T1 - Musculoskeletal simulations to investigate the influence of vertebral geometrical parameters on lumbar spine loading T2 - 7th World Congress of Biomechanics, Boston, United States, 04/07/14 -11/07/14 Y1 - 2014 ER - TY - CHAP A1 - Schmid, Vinzent A1 - Jungbauer, Bastian A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert ED - Mottok, Jürgen ED - Ziemann, Olaf T1 - The influence of different types of fabrics on the fibre volume content and porosity in basalt fibre reinforced plastics T2 - 2nd Applied Research Conference 2012 - ARC 25./26. June 2012 N2 - High quality semi-finished products with reproducible properties of basaltic fibres are hardly available on the market. In order to examine the properties of basalt fibre reinforced plastics high quality specimens are necessary. The fibre volume content and the porosity of the produced specimen are used as the typical criteria to evaluate the achieved quality of the produced material. The effect of the geometrical properties of the different semi-finished products on the fibre volume contents is relatively small whereas the porosity content is considerably affected. Y1 - 2012 UR - https://www.researchgate.net/publication/268146522_The_influence_of_different_types_of_fabrics_on_the_fibre_volume_content_and_porosity_in_basalt_fibre_reinforced_plastics SP - 162 EP - 165 PB - Shaker ER - TY - CHAP A1 - Schmid, Vinzent A1 - Jungbauer, Bastian A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert ED - Mottok, Jürgen ED - Ziemann, Olaf T1 - Diminution of mass of different types of fibre reinforcements due to thermal load T2 - Applied Research Conference 2012 - ARC 2012, 25./26. June 2012 Y1 - 2012 SP - 231 EP - 235 PB - Shaker ER - TY - CHAP A1 - Romano, Marco A1 - Micklitz, Matthias A1 - Olbrich, Florian A1 - Bierl, Rudolf A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert T1 - Experimental investigation of damping properties of unidirectionally and fabric reinforces plastics by the free decay method T2 - Proceeding of the 15th International Materials Symposium (IMSP´2014), Pamukkale University (Denizli, Turkey), 15./17. October 2014 Y1 - 2014 SP - 665 EP - 679 ER - TY - JOUR A1 - Romano, Marco A1 - Eisenried, Michael A1 - Jungbauer, Bastian A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert T1 - Influence of parameters of the production process on the material quality of unidirectionally reinforced prepregs JF - Journal of Achievements in Materials and Manufacturing Engineering (JAMME) N2 - Purpose: A prepreg production device in laboratory scale is used to develop the production process of unidirectionally reinforced prepregs. Design/methodology/approach: The aim of the prepreg production device is to impregnate different types of reinforcement fibers with an arbitrarily selectable thermoset matrix system that completely satisfies the requirements for autoclave processing. As the prepreg production device is designed and built up modularly every module corresponds one step in the process. Findings: To identify the parameters of the production process and investigate its sensitivity on the material quality of both the prepreg as an uncured semi-finished product and the composite as the cured material experimental investigations regarding the resin flow, fiber volume content, mass per unit area and void content are carried out. Overall four material combinations have been investigated, where in each case the selected impregnation temperature and the width of the impregnation gap has been reproducibly varied in selected steps. Research limitations/implications: The experimental characterization of the prepregs and of the composite material is carried out according to German standards. Y1 - 2015 UR - http://jamme.acmsse.h2.pl/vol68_1/6815.pdf VL - 68 IS - 1 SP - 32 EP - 44 ER - TY - JOUR A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert T1 - Parametric characterization of a mesomechanic kinematic caused by ondulation in fabric reinforced composites: analytical and numerical investigations JF - Frattura ed Integrità Strutturale (Fracture and Structural Integrity) N2 - A parametric characterization of a mesomechanic kinematic caused by ondulation in fabric reinforced composites is investigated by analytical and numerical investigations. Due to the definition of plain representative sequences of balanced plain-weave fabric reinforced single layers based on sines the variable geometric parameters are the amplitude and the length of the ondulation. The mesomechanic kinematic can be observed in both the analytic model and the FE-analyses. The analytic model yields hyperbolic correlations due to the strongly simplifying presumptions that neglect elasticity. In contrast the FE-analyses yield linear correlations in much smaller amounts due to the consideration of elastic parts, yet distinctly. Y1 - 2017 U6 - https://doi.org/10.3221/IGF-ESIS.39.22 VL - 11 IS - 39 SP - 226 EP - 247 ER - TY - CHAP A1 - Ottawa, Patrycja A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Wagner, Marcus A1 - Gebbeken, Norbert T1 - The influence of ondulation in fabric reinforced composites on dynamic properties in a mesoscopic scale T2 - 11. LS-DYNA Forum, 9. - 10. Oktober 2012, Ulm N2 - Structural mechanic properties of fiber reinforced plastics depend on the single components’ properties, namely matrix and fiber [5]. Simple micromechanic homogenization theories reach a limit when a laminate consists of fabric reinforced layers instead of unidirectional layers. The ondulations of warp and fill yarn caused by the textile semi-finished product are the reason why the mesoscopic scale, which is in between the microscopic and the macroscopic scale, has to be taken into account when mechanically characterizing fabric reinforced composites [3]. In this scale a mesomechanic kinematic can be derived analytically. Especially, when considering free damped vibrations of structures the repeated acting of the kinematic correlation significantly affects the damping behaviour to higher values compared to theoretically predicted damping ratios. The model is investigated using Finite-Element-Analyses and basically validated experimentally. Y1 - 2012 UR - https://www.dynamore.de/de/download/papers/dynamore/de/download/papers/ls-dyna-forum-2012/documents/materials-5-2 SP - 171 EP - 172 ER - TY - RPRT A1 - Valentino, Piergiorgio A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Furgiuele, Franco A1 - Gebbeken, Norbert T1 - Mechanische Charakterisierung von basaltfaser-verstärkten Kunststoffen mit Gewebeverstärkung – Numerische und experimentelle Untersuchungen T2 - Forschungsbericht 2013 Y1 - 2014 UR - https://doi.org/10.35096/othr/pub-799 PB - inixmedia GmbH Marketing & Medienberatung ER - TY - CHAP A1 - Valentino, Piergiorgio A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Furgiuele, Franco A1 - Gebbeken, Norbert ED - Iacovello, F. ED - Risitano, G. ED - Susmel, L. T1 - Mechanical characterization of basalt fibre reinforced plastic with different fabric reinforcements – Tensile tests and FE-calculations with representative volume elements (RVEs) T2 - Acta Fracturae - XXll Convegno Nazionale IGF (Italiano Gruppo Frattura) N2 - This paper describes the results of tensile tests and finite element (FE) calculations with representative volume elements (RVEs) of basalt fibre reinforced plastic with two different types of fabric reinforcements. As fabric reinforcements show repeating ondulations of warp and fill yarn, simple mixtures laws reach their limits. That is the reason why the mesoscopic dimension, lying between the microscopic and the macroscopic dimension, has to be taken into account when a mechanical characterization of fabric reinforced composites is carried out. The aim of this work is to determine the stiffness of a fabric reinforced composite in warp and fill direction with numerical investigations. The simulations are based on FE-calculation with two different RVEs. The tensile tests and the FE-calculations have been carried out for two different types of basalt fabrics, namely twill 2/2 and twill 1/3. The comparison between the experimental data and the results of the FE-calculations are provided in order to support the validity of the proposed model. Y1 - 2013 UR - http://www.gruppofrattura.it/pdf/convegni/22/IGFXXII/index.html#/242/ ER - TY - JOUR A1 - Micklitz, Matthias A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert ED - Ziemann, Olaf ED - Mottok, Jürgen ED - Pforr, Johannes T1 - The influence of ondulations in fabric reinforced layers on the damping properties of fibre-reinforced plastics JF - Applied Research Conference 2014 - ARC 2014, 5th July 2014, Ingolstadt Y1 - 2014 SP - 306 EP - 310 PB - Shaker CY - Aachen ER - TY - RPRT A1 - Eisenried, Michael A1 - Romano, Marco A1 - Jungbauer, Bastian A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert T1 - Herstellung von unidirektional verstärkten Prepregs im Labormaßstab – Einfluss von Fertigungsparametern auf die Materialqualität T2 - Forschungsbericht 2013 / Ostbayerische Technische Hochschule Regensburg Y1 - 2013 UR - https://doi.org/10.35096/othr/pub-799 SP - 51 EP - 52 CY - Regensburg ER - TY - JOUR A1 - Romano, Marco A1 - Hoinkes, Carl J. J. A1 - Ehrlich, Ingo A1 - Höcherl, Johannes A1 - Gebbeken, Norbert T1 - Experimental investigation of energy dissipation properties of fibre reinforced plastics with hybrid layups under high-velocity impact loads JF - Journal of Achievements in Materials and Manufacturing Engineering (JAMME) N2 - Purpose: The present work deals with the experimental investigation concerning the energy dissipation capacity of different kinds of reinforcement fibres in monolithic and hybrid layups under high velocity impact loads. The investigated kinds of fibres are carbon, glass and basalt. Design/methodology/approach: The test panels have been impregnated with thermoset resin. Curing was done by autoclave processing. In order to obtain comparable fibre volume contents of approx. 60 % in the different layups (monolithic and hybrid without and with separating layer), curing cycles adapted to the type of layup have been identified. The resulting fibre volume content of the test panels has been determined both by weighing and experimentally by chemical extraction and calcination. The impact load was applied by an instrumented experimental setup. Thereby both commercially available bullets and bearing balls accelerated with weighted propellant in a sabot have been used as impactors. The measured values are the velocities of the bearing balls as the impactor before and after penetration of the test panels. Findings: In both cases the results show the energy dissipation capacity of each single kind of fibre in case of the monolithic layups as well as the enhanced properties of the hybrid stacked layups without and with the separating layer as a core material. Typical failure modes on the impact surface and on the outlet areas are identified. Research limitations/implications: The influence of the respective kind of impactors, namely bullets and bearing balls, on the evaluated results is identified. Thereby the bearing balls exhibited a higher degree of reproducibility due to several reasons. Originality/value: Fibre reinforced plastics with hybrid stacking sequences can be used as load-bearing structures and at the same time as safety structures for passengers in automotive or aerospace applications. Moreover, with the hybrid stacked composites lightweight concepts can efficiently be realized regarding energy saving issues. Y1 - 2014 VL - 64 IS - 1 SP - 14 EP - 20 ER - TY - JOUR A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert T1 - Parametric characterization of a mesomechanic kinematic in plain and twill weave 2/2 reinforced composites by FE-calculations JF - Archives of Materials Science and Engineering (ArchivesMSE) N2 - Purpose: A parametric characterization of a mesomechanic kinematic caused by ondulation in fabric reinforced composites is investigated by numerical investigations. Design/methodology/approach: Due to the definition of plain representative sequences of balanced plain-weave and twill-weave 2/2 fabric reinforced single layers based on sines the variable geometric parameters are the amplitude and the length of the ondulation. Findings: The mesomechanic kinematic can be observed in the FE analyses for both kinds of fabric constructions. Research limitations/implications: The FE analyses consider elasticity and contraction due to Poisson effects, respectively, of the model under selected longitudinal strains. Practical implications: The results are evaluated at relevant positions on the centre-line of the ondulated warp-yarn of the plain representative model. A direct and linear coupling in case of the transversal kinematic behaviour, and thereby a corresponding definite reduction of the evaluated longitudinal strains in terms of the difference of the applied and determined longitudinal strains is identified. Originality/value: Both characteristic purely kinematic reactions due to geometric constraints directly depend on the introduced degree of ondulation. This non-dimensional parameter relates amplitude and length of one complete ondulation, and thus represents the intensity of the ondulation of the respective fabric construction. Y1 - 2019 U6 - https://doi.org/10.5604/01.3001.0013.2869 SN - 1897-2764 VL - 97 IS - 1-2 SP - 20 EP - 38 PB - Index Copernicus ER - TY - JOUR A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert T1 - Structural mechanic material damping in fabric reinforced composites BT - a review JF - Archives of Materials Science and Engineering (ArchivesMSE) N2 - Purpose: A review regarding the acting mechanisms of structural dynamic material damping in fabric reinforced composites is presented. Design/methodology/approach: Mechanical acting principles identified by different investigations are considered. Aspects of the determination and calculation of structural mechanical material properties of fabric reinforced composites are described. Approaches intending the description and classification of ondulations in fabrics reinforced single layers are demonstrated. Findings: The mesomechanic geometry of fabrics is not considered sufficiently by relatively simple homogenization approaches. Yet, it significantly affects its structural dynamic material properties, especially the dynamic ones. Research limitations/implications: In each case the different damping mechanisms act coupled and occur at the same time. Therefore a separation procedure is required in any case. Practical implications: Against the background of the comparison and remarks of the presented papers a reasonable further procedure is recommended. Thereby, FE-calculations with a parametrical variation of the mesomechanic geometry in order to identify kinematic correlations due to geometric constraints are suggested. Originality/value: The idea of the representation of the geometric conditions in terms of a degree of ondulation is described. Such a non-dimensional specific value representing the intensity of the ondulation would enable the comparability of the results of different kinds of investigations. Y1 - 2017 U6 - https://doi.org/10.5604/01.3001.0010.7747 VL - 88 IS - 1 SP - 12 EP - 41 ER - TY - JOUR A1 - Valentino, Piergiorgio A1 - Sgambitterra, Emanuele A1 - Furgiuele, Franco A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert T1 - Mechanical characterization of basalt woven fabric composites BT - numerical and experimental investigation JF - Frattura ed Integrità Strutturale (Fracture and Structural Integrity) N2 - Basalt fabric composite, with different twill wave reinforcements, i.e. twill 2/2 and twill 1/3, have been studied in this work by means of experimental tests and numerical finite element (FE) simulations. As fabric reinforcements show repeating undulations of warp and fill yarn, simple mixtures law cannot be applied. As a consequence, the mesoscopic scale, lying between the microscopic and the macroscopic one, has to be taken into account to mechanically characterize a fabric reinforced composite. The aim of this work is to evaluate the stiffness of a fabric reinforced composite in warp and fill direction. In particular a numerical FE model, assuming elliptical sections and sinusoidal shape of the yarns, has been implemented and experimental tests have been carried out in order to validate the proposed model. Finally, the strength and the failure modes le orientation, have been experimentally investigated. Y1 - 2014 U6 - https://doi.org/10.3221/IGF-ESIS.28.01 VL - 8 IS - 28 SP - 1 EP - 11 ER - TY - JOUR A1 - Romano, Marco A1 - Hoinkes, Carl J. J. A1 - Ehrlich, Ingo A1 - Höcherl, Johannes A1 - Gebbeken, Norbert T1 - Experimental investigation of fibre reinforced plastics with hybrid layups under high-velocity impact loads JF - Frattura ed Integrità Strutturale (Fracture and Structural Integrity) N2 - This paper deals with experimental investigations concerning energy dissipation capacity of different kinds of reinforcement fibres in monolithic and hybrid layups under high-velocity impact loads. The investigated kinds of fibres are carbon, glass and basalt fibres. Therefore test panels, using the same thermoset resin, were built up and cured by autoclave processing. The fibre volume content of the test panels has been determined. Furthermore the influence of a separating layer at selected positions in the hybrid stacked panels was investigated. The results show the influence and the energy dissipation capacity of each single kind of fibre and the enhanced properties for the hybrid layups by hybrid stacking sequences and the use of a separating core material. Y1 - 2014 U6 - https://doi.org/10.3221/IGF-ESIS.29.34 VL - 8 IS - 29 SP - 384 EP - 398 ER - TY - RPRT A1 - Putzer, Michael A1 - Rasmussen, John A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert A1 - Dendorfer, Sebastian ED - Baier, Wolfgang T1 - Muskuloskelettale Simulation zur Untersuchung des Einflusses geometrischer Parameter der Wirbelkörper auf die Belastung der Lendenwirbelsäule T2 - Forschungsbericht 2013 / Ostbayerische Technische Hochschule Regensburg Y1 - 2013 UR - https://doi.org/10.35096/othr/pub-799 SP - 60 EP - 61 CY - Regensburg ER - TY - JOUR A1 - Romano, Marco A1 - Micklitz, Matthias A1 - Olbrich, Florian A1 - Bierl, Rudolf A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert T1 - Experimental investigation of damping properties of unidirectionally and fabric reinforced plastics by the free decay method JF - Journal of Achievements in Materials and Manufacturing Engineering N2 - Purpose: of this paper is experimental investigation of damping properties of unidirectionally and fabric reinforced plastics by the free decay method. Design/methodology/approach: For the evaluation of the presumed effect experimental structural dynamic investigations comparing unidirectionally and fabric reinforced plastics are carried out. In detail the free decay behaviour of flat beamlike specimens under fixed-free boundary conditions and relatively constant and reproducible displacement excitation is investigated. Findings: The vibrating structure has been measured by a laser scanning vibrometer PSV 400 from POLYTEC. In both cases evaluation of the results yields enhanced damping properties of the specimens with fabric reinforcement compared to the unidirectionally reinforced specimens. The results justify the presumed acting of a mesomechanic kinematic. Research limitations/implications: The results show that in either case the material damping in terms of the logarithmic decrement of the fabric reinforced material is higher than the material damping in of the unidirectionally reinforced material. Additionally, when the fabric reinforced specimens are addressed, in each case the plain weave reinforced specimens exhibited higher values of the material damping as the twill weave 2/2 reinforced ones. Originality/value: Ondulations in fabrics as a textile semi-finished product are caused by the alternating crossing of warp and fill yarns. In the mesoscopic scale the acting of a mesomechanic kinematic is presumed to enhance the damping properties under cyclic elastic deformation. For the evaluation of the presumed effect experimental structural dynamic investigations comparing unidirectionally and fabric reinforced plastics are carried out. KW - structural vibration KW - damping KW - fibre reinforced plastics KW - mesomechanic scale KW - fabric reinforced layer Y1 - 2014 VL - 63 IS - 2 SP - 65 EP - 80 ER - TY - JOUR A1 - Andrae, Matthias A1 - Kastenmeier, Andreas A1 - Gebhardt, Jakob A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert T1 - Shock-tube tests on conventional windows: Exploring retrofit concepts for enhanced blast protection JF - International Journal of Protective Structures N2 - Ensuring blast protection for existing buildings, especially addressing the vulnerability of conventional windows, is a significant challenge. Such unprotected windows can shatter even with moderate blast loads, posing a substantial risk of injury to occupants. This article discusses experimental research on enhancing the blast protection of single casement windows with insulating glass units and frames made of unplasticized polyvinyl chloride (uPVC). A retrofit concept using anti-shatter films, metallic sash reinforcements, adhesive bonding of the glazing to the sash frame, and a burglary resistance fitting-system was developed and tested in an explosion-driven shock-tube. Moreover, novel patches made of glass fiber-reinforced polymer applied to the corners of the window frames have been tested and proven effective in providing additional strength to the window. The study concludes that the tested combination of retrofit measures can significantly reduce hazards from window fragments without compromising functionality or aesthetics. Y1 - 2024 U6 - https://doi.org/10.1177/20414196241284297 SN - 2041-4196 PB - SAGE ER - TY - CHAP A1 - Romano, Marco A1 - Hoinkes, Carl J. J. A1 - Ehrlich, Ingo A1 - Höcherl, Johannes A1 - Gebbeken, Norbert ED - Meran, C. T1 - Influence of the impactor on the experimentally determined energy dissipation properties of fiber-reinforced plastics with hybrid layups under high velocity impact loads T2 - Proceeding of the 15th International Materials Symposium (IMSP´2014), Pamukkale University (Denizli, Turkey), 15./17. October 2014 Y1 - 2014 SP - 650 EP - 664 ER - TY - CHAP A1 - Hoinkes, Carl J. J. A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Höcherl, Johannes A1 - Gebbeken, Norbert ED - Ziemann, Olaf ED - Mottok, Jürgen ED - Pforr, Johannes T1 - Investigation of fibre reinforced plastics with monolithic and hybrid stacking sequences under high-velocity impact loads T2 - Applied Research Conference 2014 - ARC 2014, 5th July 2014, Ingolstadt Y1 - 2014 PB - Shaker CY - Aachen ER - TY - CHAP A1 - Eisenried, Michael A1 - Romano, Marco A1 - Jungbauer, Bastian A1 - Ehrlich, Ingo A1 - Gebbeken, Norbert ED - Ziemann, Olaf ED - Bogner, Werner ED - Mottok, Jürgen T1 - Influence of parameters of the production process on the material quality of unidirectionally reinforced prepregs T2 - Applied Research Conference 2013, ARC 2013 ; 17th and 18th October 2013, Deggendorf Y1 - 2013 SP - 70 EP - 75 PB - Shaker CY - Aachen ER -