TY - CHAP A1 - Sindersberger, Dirk A1 - Prem, Nina A1 - Monkman, Gareth J. A1 - Zimmermann, Klaus ED - Schlaak, Helmut T1 - Self-Sensing Electroadhesive Polymer Gripper with Magnetically Controllable Surface Geometry T2 - Actuator 2021, International Conference and Exhibition on New Actuator Systems and Applications: GMM conference, February 17-19, 2021, online event N2 - Compared to conventional end effectors, electro-adhesive grippers enable the handling of sensitive, soft or air-permeable materials [1]. The prehension force is based on a strong electric field generated by electrodes resulting in a polarisation of the dielectric and the generation of mirror charges in the workpiece. When the electrode supply voltage is deactivated, the electric field drops,but an electrostatic field remains due to remanent polarisation of the dielectric. The residual charge on the gripper surface reduces only slowly and in combination with other influencing factors can prevent the workpieces from being ejected temporarily or completely. In this work a solution to this problem is presented by means of gripper surface deforming caused by the applicat ion of a magnetic field to a magneto- active polymer (MAP) actuator. The in-creased distance between the workpiece and the dielectric enables precise and controlled ejection. In addition to compliance and deformability, the employment of soft smart materials enables the integration of self-sens-ing mechanisms for the measurement of surface deformation. The embedding of electrically conductive flexible electrodes within the soft silicone dielectric sup port such movements and serves as the n ecessary electrodes for electroadhesion. Since the implementation of the end effectoris based entirely on soft materials, the self-sensing magnetically controllable electroadhesive gripper (SMEG) can be produced in a shape deposition manufacturing (SDM) process [2], [3] and is highly applicable to the field of soft robotics. Y1 - 2021 SN - 9783800754540 U6 - https://doi.org/10.1002/macp.201800222 SP - 318 EP - 320 PB - VDE VERLAG CY - Berlin; Offenbach ER - TY - JOUR A1 - Sindersberger, Dirk A1 - Prem, Nina A1 - Monkman, Gareth J. T1 - Self-assembling structure formation in low-density magnetoactive polymers JF - Journal of Applied Polymer Science N2 - The formation of microstructures in magnetoactive polymers (MAPs) is a recently discovered phenomenon found only with very low filler particle concentrations (less than 3 wt %). Due to the degassing process, filler particles collect around an ascending bubble, which dissolves at a certain point leaving particulate rings within the matrix. The formation of toroidal microstructures commences as filler concentration approaches 1 wt %. The development of coherent parallel aligned rings with a compact order continues as particle concentrations increase toward 2 wt %. Between 2 and 3 wt % capillary doublets develop, while mass percentages higher than 3% result in increasing entropy as the random order of particle agglomeration found in higher concentration MAP dominates. Self-structured samples of different filler material and concentrations between 1 and 3 wt % have been investigated using X-ray tomography, where the emerging structures can be observed and visualized. The ring structures resulting from this research represent microinductivities which can be fabricated in a targeted manner, thus enabling new applications in the high-frequency radio field. Furthermore, these anisotropic, but well-organized, structures have magnetic field-dependent implications for optical, thermal, acoustic, and medical applications. KW - composites KW - ELASTOMERS KW - magnetism and magnetic properties KW - Particle KW - PERMEABILITY KW - self-assembly KW - sensors and actuators KW - VISCOELASTIC PROPERTIES KW - X-ray Y1 - 2019 U6 - https://doi.org/10.1002/app.48291 VL - 137 IS - 3 PB - Wiley ER - TY - JOUR A1 - Sindersberger, Dirk A1 - Diermeier, Andreas A1 - Prem, Nina A1 - Monkman, Gareth J. T1 - Printing of hybrid magneto active polymers with 6 degrees of freedom JF - Materials today communications N2 - 3D printing techniques offer a versatile method for the fabrication and structuring of magnetoactive polymer (MAP) components and devices for research prototype development. MAP materials enjoy an advantage in that the particulate content may be manipulated by external magnetic fields during the forming and curing processes. Controlled particle diffusion within the polymer matrix, by means of external fields applied during the printing process, influences a further three spatial dimensions. This permits control of the spatial particle concentration and makes free displacement of particle accumulations possible during the crosslinking phase. Particles which are susceptible to electric or magnetic fields can thereby be shifted into regions previously free of particles. The additional 3 graded dispersion axes effectively results in what can be described as 6 degrees of freedom (6DOF) printing. Electrically conductive polymers combined with non-conductive areas, provide an additional benefit for the production of complex hybrid structures. This may be augmented by the combination of magnetically active thermoplastics as inelastic structural components together with mechanically deformable elastomers. The combination of all fabrication methods in one hybrid printing process makes the production of complex sensor and actuator systems in one manufacturing sequence possible. This far exceeds the capabilities of conventional casting and machining operations and opens new possibilities for the fabrication of soft material elements. KW - 3D printing KW - Conductive polymer KW - Hybrid KW - Magnetoactive KW - Polymer Y1 - 2018 U6 - https://doi.org/10.1016/j.mtcomm.2018.02.032 VL - 15 IS - June SP - 269 EP - 274 PB - Elsevier ER - TY - JOUR A1 - Prem, Nina A1 - Chavez Vega, Jhohan Harvey A1 - Böhm, Valter A1 - Sindersberger, Dirk A1 - Monkman, Gareth J. A1 - Zimmermann, Klaus T1 - Properties of Polydimethylsiloxane and Magnetoactive Polymers with Electroconductive Particles JF - Macromolecular Chemistry and Physics N2 - Magnetoactive polymers are intelligent materials whose mechanical and electrical characteristics are reversibly influenced by external magnetic stimuli. They consist of a highly elastic polymer matrix in which magnetically soft and/or hard particles are distributed by means of special fabrication processes. In addition to ferromagnetic particles such as carbonyl iron powder, electrically conductive particles may also be embedded into the polymer matrix. After characterizing a range of compounds, this work focuses on a comparison of the electrical properties and the suitability of various materials for applications, with particular emphasis on integration into 3D and 6D printing processes. 6D printing is based on the selective positioning of particles in a 3D polymer matrix with a further three degrees of freedom for a graduated dispersion of the particles at certain points and in desired directions. The aim is therefore to ensure that the polymers containing electroconductive tracks have the best possible electrical properties, that is, low resistivity but are still capable of being printed. A comparison between the traditionally used compounds containing graphite and carbon black is made for the first time. This latter is found to be greatly superior both in terms of electrical conductivity and applicability to 3D printing and 6D printing. KW - 3D printing KW - 6D printing KW - carbon black KW - composites KW - electroconductive particles KW - graphite KW - magnetoactive polymers KW - polydimethylsiloxane KW - STRAIN, *MRU Y1 - 2018 U6 - https://doi.org/10.1002/macp.201800222 VL - 219 IS - 18 PB - Wiley ER - TY - JOUR A1 - Zimmermann, Klaus A1 - Böhm, Valter A1 - Becker T.I., A1 - Chavez Vega, Jhohan Harvey A1 - Kaufhold, Tobias A1 - Monkman, Gareth J. A1 - Sindersberger, Dirk A1 - Diermeier, Andreas A1 - Prem, Nina T1 - Mechanical Characterization of the Field-Dependent Properties of Magnetoactive Polymers and Integrated Electrets for their Application in Soft Robotics JF - International Scientific Journal "Problems of Mechanics" Y1 - 2017 SN - 1512-0740 VL - 69 IS - 4 ER - TY - JOUR A1 - Zimmermann, Klaus A1 - Chavez Vega, Jhohan Harvey A1 - Becker, Tatiana I. A1 - Witte, Hartmut A1 - Schilling, Cornelius A1 - Köhring, Sebastian A1 - Böhm, Valter A1 - Monkman, Gareth J. A1 - Prem, Nina A1 - Sindersberger, Dirk A1 - Lutz, I. I. A1 - Merker, Lukas T1 - An approach to a form-adaptive compliant gripper element based on magneto-sensitive elastomers with a bioinspired sensorized surface JF - Problems of Mechanics Y1 - 2019 SN - 1512-0740 VL - 75 IS - 2 SP - 23 EP - 38 PB - Georgian Technical University CY - Tbilisi ER - TY - JOUR A1 - Broser, Christian A1 - Falter, Thomas A1 - Ławrowski, Robert Damian A1 - Altenbuchner, Amelie A1 - Vögele, Daniel A1 - Koss, Claus A1 - Schlamp, Matthias A1 - Dunnweber, Jan A1 - Steffens, Oliver A1 - Heckner, Markus A1 - Jaritz, Sabine A1 - Schiegl, Thomas A1 - Corsten, Sabine A1 - Lauer, Norina A1 - Guertler, Katherine A1 - Koenig, Eric A1 - Haug, Sonja A1 - Huber, Dominik A1 - Birkenmaier, Clemens A1 - Krenkel, Lars A1 - Wagner, Thomas A1 - Justus, Xenia A1 - Saßmannshausen, Sean Patrick A1 - Kleine, Nadine A1 - Weber, Karsten A1 - Braun, Carina N. A1 - Giacoppo, Giuliano A1 - Heinrich, Michael A1 - Just, Tobias A1 - Schreck, Thomas A1 - Schnabl, Andreas A1 - Gilmore, Amador Téran A1 - Roeslin, Samuel A1 - Schmid, Sandra A1 - Wellnitz, Felix A1 - Malz, Sebastian A1 - Maurial, Andreas A1 - Hauser, Florian A1 - Mottok, Jürgen A1 - Klettke, Meike A1 - Scherzinger, Stefanie A1 - Störl, Uta A1 - Heckner, Markus A1 - Bazo, Alexander A1 - Wolff, Christian A1 - Kopper, Andreas A1 - Westner, Markus A1 - Pongratz, Christian A1 - Ehrlich, Ingo A1 - Briem, Ulrich A1 - Hederer, Sebastian A1 - Wagner, Marcus A1 - Schillinger, Moritz A1 - Görlach, Julien A1 - Hierl, Stefan A1 - Siegl, Marco A1 - Langer, Christoph A1 - Hausladen, Matthias A1 - Schreiner, Rupert A1 - Haslbeck, Matthias A1 - Kreuzer, Reinhard A1 - Brückl, Oliver A1 - Dawoud, Belal A1 - Rabl, Hans-Peter A1 - Gamisch, Bernd A1 - Schmidt, Ottfried A1 - Heberl, Michael A1 - Gänsbauer, Bianca A1 - Bick, Werner A1 - Ellermeier, Andreas A1 - Monkman, Gareth J. A1 - Prem, Nina A1 - Sindersberger, Dirk A1 - Tschurtschenthaler, Karl A1 - Aurbach, Maximilian A1 - Dendorfer, Sebastian A1 - Betz, Michael A. A1 - Szecsey, Tamara A1 - Mauerer, Wolfgang A1 - Murr, Florian ED - Baier, Wolfgang T1 - Forschung 2018 T3 - Forschungsberichte der OTH Regensburg - 2018 KW - Forschung KW - Forschungsbericht Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-13826 SN - 978-3-9818209-5-9 CY - Regensburg ER - TY - GEN A1 - Chavez Vega, Jhohan Harvey A1 - Böhm, Valter A1 - Scharff, Moritz A1 - Prem, Nina A1 - Monkman, Gareth J. A1 - Becker, Tatiana I. A1 - Günther, L. A1 - Alencastre, Jorge H. A1 - Grieseler, R. A1 - Zimmermann, Klaus T1 - Magneto-active elastomer as viscoelastic foundation material for artificial tactile sensors with tuneable properties T2 - Book of Abstracts of the 16th German Ferrofluid Workshop, Braunschweig, 18.-20.07.2018 Y1 - 2018 SP - 16 EP - 17 ER -