TY - CHAP A1 - Navitski, Aliaksandr A1 - Serbun, Pavel A1 - Müller, Güntner A1 - Schreiner, Rupert A1 - Dams, Florian T1 - Efficient and reliable field emission from silicon tip arrays for miniaturized electron sources T2 - 2011 24th International Vacuum Nanoelectronics Conference ; 18-22 July 2011 Wuppertal N2 - Silicon-based cathodes with precisely aligned field emitter arrays (FEA) applicable for miniaturized electron sources were successfully developed and fabricated. The cathode chips contain about 3×105 Si tips/cm2 in a triangular array with a tip height of 2.5 μm, tip radius of 20 nm, and lateral distance between tips of 20 μm. Amazingly homogeneous and well-aligned field emission (FE) from all tips (i.e. 100% efficiency) and maximum stable currents of typically 0.1 μA for p- and 0.6 μA for n-type Si were reproducibly achieved. Current-voltage characteristics of p-type Si tips exhibit the expected saturation at around 10 nA due to limited supply of electrons from a depletion layer, while the n-type Si tips show the usual FN behaviour. Additional coating of the Si tips with a 10 nm Au layer resulted in at least 5 times higher average FE current levels i.e. typically 3 μA but lead, however, to a 30% increase of the onset voltage. KW - cathodes KW - coatings KW - elemental semiconductors KW - field emission KW - field emitter arrays KW - miniaturized electron sources KW - silicon tips KW - structured cold cathode Y1 - 2011 UR - https://ieeexplore.ieee.org/document/6004567?arnumber=6004567 SN - 978-3-00-035081-8 SN - 978-1-4577-1243-2 SN - 2380-6311 SN - 2164-2370 SP - 71 EP - 72 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Schreiner, Rupert A1 - Prommesberger, Christian A1 - Langer, Christoph A1 - Dams, Florian A1 - Serbun, Pavel A1 - Bornmann, Benjamin A1 - Navitski, Aliaksandr A1 - Müller, Güntner T1 - Highly uniform and stable electron field emission from B-doped Si-tip arrays for applications in integrated vacuum microelectronic devices T2 - 25th International Vacuum Nanoelectronics Conference (IVNC) - Jeju, Korea (South), 09.07. - 13.07.2012 N2 - In order to improve the uniformity and field emission stability of p-type silicon tip arrays for pulsed sensor applications, we have systematically studied the influence of the fabrication parameters on the tip shape and the specific operating conditions. Based on detailed design calculations of the field enhancement, we have fabricated a series of hexagonal arrays of B-doped Si-tips in a triangular arrangement, each containing a different number of tips (91, 575 and 1300) of 1 μm height, 20 nm apex radius, and 20 μm pitch. The field emission properties of both individual tips and complete arrays were investigated with by field emission scanning microscopy. The current plateaus of these tips typically occur at about 10 nA and 60 V/μm field level. In this carrier depletion range, single tips provide the highest current stability (<; 4%) and optical current switching ratios of ~2.5. Rather homogeneous emission of the tip arrays leads to an almost linear scaling of the saturation current (2 nA/tip) and to a much improved current stability (<; 1%) measured over 1 hour. KW - boron KW - circuit stability KW - elemental semiconductors KW - field emission ion microscopy KW - field emitter arrays KW - integrated optoelectronics KW - microfabrication KW - microsensors KW - optical switches KW - silicon tips Y1 - 2012 SN - 978-1-4673-1984-3 SN - 978-1-4673-1983-6 SN - 978-1-4673-1982-9 U6 - https://doi.org/10.1109/IVNC.2012.6316857 SN - 2380-6311 SN - 2164-2370 SP - 1 EP - 2 PB - IEEE CY - Piscataway, NJ. ER - TY - CHAP A1 - Serbun, Pavel A1 - Navitski, Aliaksandr A1 - Müller, Güntner A1 - Schreiner, Rupert A1 - Prommesberger, Christian A1 - Langer, Christoph A1 - Dams, Florian T1 - Scaling of the field emission current from B-doped Si-tip arrays T2 - 25th International Vacuum Nanoelectronics Conference (IVNC) ; Jeju, Korea (South), 09.07.2012 - 13.07.2012 N2 - We have fabricated a test chip with various hexagonal arrays of B-doped Si tips (height ~ 3 μm, apex radius <; 30 nm, number 1-4447, resistivity 4 Ωcm, 100 orientation) in triangular arrangement (pitch 10 μm, density 1.16×10 6 cm -2 ) in order to systematically investigate the field emission current scaling with the number N of tips. Regulated voltage scans for 1 nA revealed rather efficient emission from nearly all tips of the arrays at an average field of 15 V/μm. The expected current plateau was always obtained at fields around 20 V/μm, but its width strongly increased with N. In this carrier depletion range, the single tip provided a much higher stability (<; 5%) of the current (2-3 nA) than at lower (>; 50 %) and higher currents (>; 30%). Integral current measurements of the hexagonal arrays resulted in a statistically improved current stability (<; 1%) but only a weak increase of the total current with N 0.28 yet. These results will be discussed with respect to the remaining inhomogeneity of the tips. KW - Anodes KW - B-doped KW - boron KW - Current measurement KW - current scaling KW - electron field emission KW - elemental semiconductors KW - field emitter arrays KW - Iron KW - Nonhomogeneous media KW - silicon KW - Voltage control Y1 - 2012 SN - 978-1-4673-1984-3 SN - 978-1-4673-1983-6 SN - 978-1-4673-1982-9 U6 - https://doi.org/10.1109/IVNC.2012.6316965 SN - 2380-6311 SN - 2164-2370 SP - 1 EP - 2 PB - IEEE CY - Piscataway, N.J. ER -