TY - JOUR A1 - Mauerer, Wolfgang A1 - Rexhepaj, Tanja A1 - Monkman, Gareth J. A1 - Sindersberger, Dirk A1 - Diermeier, Andreas A1 - Neidhart, Thomas A1 - Wolfrum, Dominik A1 - Sterner, Michael A1 - Heberl, Michael A1 - Nusko, Robert A1 - Maier, Georg A1 - Nagl, Klaus A1 - Reuter, Monika A1 - Hofrichter, Andreas A1 - Lex, Thomas A1 - Lesch, Florian A1 - Kieninger, Bärbel A1 - Szalo, Alexander Eduard A1 - Zehner, Alexander A1 - Palm, Christoph A1 - Joblin, Mitchell A1 - Apel, Sven A1 - Ramsauer, Ralf A1 - Lohmann, Daniel A1 - Westner, Markus A1 - Strasser, Artur A1 - Munndi, Maximilian A1 - Ebner, Lena A1 - Elsner, Michael A1 - Weiß, Nils A1 - Segerer, Matthias A1 - Hackenberg, Rudolf A1 - Steger, Sebastian A1 - Schmailzl, Anton A1 - Dostalek, Michael A1 - Armbruster, Dominik A1 - Koch, Fabian A1 - Hierl, Stefan A1 - Thumann, Philipp A1 - Swidergal, Krzysztof A1 - Wagner, Marcus A1 - Briem, Ulrich A1 - Diermeier, Andreas A1 - Spreitzer, Stefan A1 - Beiderbeck, Sabrina A1 - Hook, Christian A1 - Zobel, Martin A1 - Weber, Tim A1 - Groß, Simon A1 - Penzkofer, Rainer A1 - Dendorfer, Sebastian A1 - Schillitz, Ingo A1 - Bauer, Thomas A1 - Rudolph, Clarissa A1 - Schmidt, Katja A1 - Liebetruth, Thomas A1 - Hamer, Markus A1 - Haug, Sonja A1 - Vernim, Matthias A1 - Weber, Karsten A1 - Saßmannshausen, Sean Patrick A1 - Books, Sebastian A1 - Neuleitner, Nikolaus A1 - Rechenauer, Christian A1 - Steffens, Oliver A1 - Kusterle, Wolfgang A1 - Gömmel, Roland A1 - Wellnitz, Felix A1 - Stierstorfer, Johannes A1 - Stadler, Dominik A1 - Hofmann, Matthias J. A1 - Motschmann, Hubert A1 - Shamonin (Chamonine), Mikhail A1 - Bleicher, Veronika A1 - Fischer, Sebastian A1 - Hackenberg, Rudolf A1 - Horn, Anton A1 - Kawasch, Raphael A1 - Petzenhauser, Michael A1 - Probst, Tobias A1 - Udalzow, Anton A1 - Dams, Florian A1 - Schreiner, Rupert A1 - Langer, Christoph A1 - Prommesberger, Christian A1 - Ławrowski, Robert Damian ED - Baier, Wolfgang T1 - Forschungsbericht 2016 T3 - Forschungsberichte der OTH Regensburg - 2016 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-13840 CY - Regensburg ER - TY - JOUR A1 - Blümel, Christina A1 - Sachs, Marius A1 - Laumer, Tobias A1 - Winzer, Bettina A1 - Schmidt, Jochen A1 - Schmidt, Michael A1 - Peukert, Wolfgang A1 - Wirth, Karl-Ernst T1 - Increasing flowability and bulk density of PE-HD powders by a dry particle coating process and impact on LBM processes JF - Rapid Prototyping Journal N2 - Purpose – The purpose of this paper is to demonstrate the processability of cohesive PE-HD particles in laser beam melting processes (LBM) of polymers. Furthermore, we present a characterization method for polymer particles, which can predict the quality of the powder deposition via LBM processes. Design/methodology/approach – This study focuses on the application of dry particle coating processes to increase flowability and bulk density of PE-HD particles. Both has been measured and afterwards validated via powder deposition of PE-HD particles in a LBM machine. Findings – For efficient coating in a dry particle coating process, the PE-HD particles and the attached nanoparticles need to show similar surface chemistry, i.e. both need to behave either hydrophobic or hydrophilic. It is demonstrated that dry particle coating is appropriate to enhance flowability and bulk density of PE-HD particles and hence considerably improves LBM processes and the resulting product quality. Originality/value – At present, in LBM processes mainly polyamide (PA), 12 particles are used, which are so far quite expensive in comparison to, for example, PE-HD particles. This work provides a unique and versatile method for nanoparticulate surface modification which may be applied to a wide variety of materials. After the coating, the particles are applicable for the LBM process. Our results provide a correlation between flowability and bulk density and the resulting product quality. KW - Polymers KW - Bulk density KW - Dry particle coating KW - Flowability KW - Hydrophilic KW - Hydrophobic Y1 - 2015 U6 - https://doi.org/10.1108/RPJ-07-2013-0074 SN - 1758-7670 SN - 1355-2546 VL - 21 IS - 6 SP - 697 EP - 704 PB - Emerald ER - TY - CHAP A1 - Schmidt, Jochen A1 - Fanselow, Stephanie A1 - Wirth, Karl-Ernst A1 - Peukert, Wolfgang A1 - Hiller, Saskia A1 - Laumer, Tobias A1 - Schmidt, Michael ED - Witt, Gerd ED - Wegner, Andreas ED - Sehrt, Jan T1 - Herstellung von Polyolefinstrahlschmelzmaterialien mittels Schmelzeemulgieren zum Einsatz in der additiven Fertigung T2 - Neue Entwicklungen in der Additiven Fertigung N2 - Im Rahmen dieses Beitrags wird das Schmelzeemulgieren als Verfahren zur Herstel-lung von Polymermikropartikeln vorgestellt. In diesem Prozess wird zunächst ein Polymergranulat in einer kontinuierlichen Phase in Gegenwart geeigneter Additive in einem Rührbehälter aufgeschmolzen, die Rohemulsion in einer Rotor-Stator-Einheit feinemulgiert und anschließend zu einer Suspension abgekühlt. Der Einfluss von Prozessparametern und Systemzusam-mensetzung auf das Emulgierergebnis wird diskutiert und die Anwendbarkeit des Verfahrens für polymere Mikropartikeln anhand von Polypropylen (PP) und Polyethylen (PE-HD) dargestellt. Die erhaltenen Suspensionen werden zur Überführung in Pulverform sprühgetrocknet und die Fließeigenschaften des Pulvers analysiert. Durch trockenes Beschichten mit pyrogener Kieselsäure kann die Fließfähigkeit der erhaltenen Partikeln weiter verbessert werden. Das Verfahren bietet somit einen neuen Zugang zur Herstellung neuer Ausgangsmaterialien für die Additive Fertigung. Y1 - 2015 SN - 978-3-662-48472-2 U6 - https://doi.org/10.1007/978-3-662-48473-9_2 SP - 13 EP - 23 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Appelhans, Marie-Luise A1 - Kampmann, Matthias A1 - Mottok, Jürgen A1 - Riederer, Michael A1 - Nagl, Klaus A1 - Steffens, Oliver A1 - Dünnweber, Jan A1 - Wildgruber, Markus A1 - Roth, Julius A1 - Stadler, Timo A1 - Palm, Christoph A1 - Weiß, Martin Georg A1 - Rochholz, Sandra A1 - Bierl, Rudolf A1 - Gschossmann, Andreas A1 - Haug, Sonja A1 - Schmidbauer, Simon A1 - Koch, Anna A1 - Westner, Markus A1 - Bary, Benedikt von A1 - Ellermeier, Andreas A1 - Vögele, Daniel A1 - Maiwald, Frederik A1 - Hierl, Stefan A1 - Schlamp, Matthias A1 - Ehrlich, Ingo A1 - Siegl, Marco A1 - Hüntelmann, Sven A1 - Wildfeuer, Matthias A1 - Brückl, Oliver A1 - Sterner, Michael A1 - Hofrichter, Andreas A1 - Eckert, Fabian A1 - Bauer, Franz A1 - Dawoud, Belal A1 - Rabl, Hans-Peter A1 - Gamisch, Bernd A1 - Schmidt, Ottfried A1 - Heberl, Michael A1 - Thema, Martin A1 - Mayer, Ulrike A1 - Eller, Johannes A1 - Sippenauer, Thomas A1 - Adelt, Christian A1 - Haslbeck, Matthias A1 - Vogl, Bettina A1 - Mauerer, Wolfgang A1 - Ramsauer, Ralf A1 - Lohmann, Daniel A1 - Sax, Irmengard A1 - Gabor, Thomas A1 - Feld, Sebastian A1 - Linnhoff-Popien, Claudia A1 - Ławrowski, Robert Damian A1 - Langer, Christoph A1 - Schreiner, Rupert A1 - Sellmair, Josef ED - Baier, Wolfgang T1 - Forschung 2019 BT - Thema: Künstliche Intelligenz N2 - Bericht mit Forschungsprojekten aus verschiedenen Bereichen der OTH Regensburg mit dem Schwerpunktthema "Künstliche Intelligenz" und einem Gespräch zur "Medizin der Zukunft" T3 - Forschungsberichte der OTH Regensburg - 2019 KW - Forschung KW - Forschungsbericht KW - Künstliche Intelligenz Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-7890 SN - 978-3-9818209-7-3 CY - Regensburg ER - TY - JOUR A1 - Broser, Christian A1 - Falter, Thomas A1 - Ławrowski, Robert Damian A1 - Altenbuchner, Amelie A1 - Vögele, Daniel A1 - Koss, Claus A1 - Schlampp, Matthias A1 - Dunnweber, Jan A1 - Steffens, Oliver A1 - Heckner, Markus A1 - Jaritz, Sabine A1 - Schiegl, Thomas A1 - Corsten, Sabine A1 - Lauer, Norina A1 - Guertler, Katherine A1 - Koenig, Eric A1 - Haug, Sonja A1 - Huber, Dominik A1 - Birkenmaier, Clemens A1 - Krenkel, Lars A1 - Wagner, Thomas A1 - Justus, Xenia A1 - Saßmannshausen, Sean Patrick A1 - Kleine, Nadine A1 - Weber, Karsten A1 - Braun, Carina N. A1 - Giacoppo, Giuliano A1 - Heinrich, Michael A1 - Just, Tobias A1 - Schreck, Thomas A1 - Schnabl, Andreas A1 - Gilmore, Amador Téran A1 - Roeslin, Samuel A1 - Schmid, Sandra A1 - Wellnitz, Felix A1 - Malz, Sebastian A1 - Maurial, Andreas A1 - Hauser, Florian A1 - Mottok, Jürgen A1 - Klettke, Meike A1 - Scherzinger, Stefanie A1 - Störl, Uta A1 - Heckner, Markus A1 - Bazo, Alexander A1 - Wolff, Christian A1 - Kopper, Andreas A1 - Westner, Markus A1 - Pongratz, Christian A1 - Ehrlich, Ingo A1 - Briem, Ulrich A1 - Hederer, Sebastian A1 - Wagner, Marcus A1 - Schillinger, Moritz A1 - Görlach, Julien A1 - Hierl, Stefan A1 - Siegl, Marco A1 - Langer, Christoph A1 - Hausladen, Matthias A1 - Schreiner, Rupert A1 - Haslbeck, Matthias A1 - Kreuzer, Reinhard A1 - Brückl, Oliver A1 - Dawoud, Belal A1 - Rabl, Hans-Peter A1 - Gamisch, Bernd A1 - Schmidt, Ottfried A1 - Heberl, Michael A1 - Gänsbauer, Bianca A1 - Bick, Werner A1 - Ellermeier, Andreas A1 - Monkman, Gareth J. A1 - Prem, Nina A1 - Sindersberger, Dirk A1 - Tschurtschenthaler, Karl A1 - Aurbach, Maximilian A1 - Dendorfer, Sebastian A1 - Betz, Michael A. A1 - Szecsey, Tamara A1 - Mauerer, Wolfgang A1 - Murr, Florian ED - Baier, Wolfgang T1 - Forschung 2018 T3 - Forschungsberichte der OTH Regensburg - 2018 KW - Forschung KW - Forschungsbericht Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-13826 SN - 978-3-9818209-5-9 CY - Regensburg ER - TY - CHAP A1 - Laumer, Tobias A1 - Karg, Michael Cornelius Hermann A1 - Schmidt, Michael T1 - Additive Manufacturing of Gradient and Multimaterial Components T2 - International Conference on Competitive Manufacturing COMA, 2013, Stellenbosch N2 - In the paper first results regarding the realisation of gradient and multi-material parts manufactured by Laser Beam Melting in powder bed of metals and polymers are published. Gradient properties of additively manufactured metal parts can be achieved by varying the composition of alloying components in the powder and adapting process strategies. As an alternative to atomizing pre-alloyed materials, mixtures of different powders are investigated. For realizing multi-material-parts from polymers, at first relevant material properties concerning compatibility have to be analysed. Therefore the paper shows the main requirements for compatibility between different materials and also first results regarding the compatibility of polymer powders and possible combinations for the manufacturing of multi-material components by laser beam melting of polymers. KW - additive manufacturing KW - Laser Beam Melting in Powder Bed KW - New Materials Y1 - 2013 UR - https://www.researchgate.net/publication/318723870_Additive_Manufacturing_of_Gradient_and_Multimaterial_Components ER - TY - CHAP A1 - Laumer, Tobias A1 - Karg, Michael Cornelius Hermann A1 - Schmidt, Michael T1 - Neue Prozessstrategien zur Herstellung von Multi- Material-Bauteilen und Gradientenwerkstoffen T2 - Zukunft individuell gestalten : Industriekolloquium des Sonderforschungsbereichs 814 - Additive Fertigung ; [Dezember 2012 ; Nürnberg] N2 - Das additive Fertigungsverfahren, dem gemeinhin die größten Potentiale zugesprochen werden, ist das Laserstrahlschmelzen im Pulverbett von Kunststoffen (LSS-K) und von Metallen (LSS-M). Wie bei anderen Techniken der additiven Fertigung werden Bauteile direkt aus CAD-Dateien ohne zusätzliche Werkzeuge bei enormer konstruktiver Freiheit gefertigt. Die resultierenden Werkstoffeigenschaften sind vergleichbar mit konventionelleren Prozessrouten wie etwa dem Spritzgießen thermoplastischer Polymere beziehungsweise auf der Seite der Metalle dem Schmieden oder Gießen. Derzeit wird der Einsatz des LSS zur Fertigung von Endprodukten in kleinen Stückzahlen erschwert von nicht ausreichender Prozessstabilität und, insbesondere bei Kunststoffen, von der eingeschränkten Werkstoffauswahl. Bisher werden für beide Werkstoffklassen Bauteile aus jeweils einem einzigen Ausgangsmaterial hergestellt. Näherungsweise erzeugt LSS also einheitliche Materialeigenschaften über das gesamte Bauteil hinweg. Ein Ansatz, der in den Teilprojekten A5 und B6 des Sonderforschungsbereichs 814 verfolgt wird, ist die Realisierung von Multi-Material-Bauteilen mittels LSS-K beziehungsweise LSS-M. Y1 - 2012 UR - https://www.researchgate.net/publication/338986395_Neue_Prozessstrategien_zur_Herstellung_von_Multi-_Material-Bauteilen_und_Gradientenwerkstoffen SP - 101 EP - 116 CY - Erlangen ER - TY - JOUR A1 - Laumer, Tobias A1 - Karg, Michael Cornelius Hermann A1 - Schmidt, Michael T1 - Laser Beam Melting of Multi-Material Components JF - Physics Procedia N2 - First results regarding the realisation of multi-material components manufactured by Laser Beam Melting of polymers and metals are published. For realising composite structures from polymer powders by additive manufacturing, at first relevant material properties regarding compatibility have to be analysed. The paper shows the main requirements for compatibility between different materials and offers first results in form of a compatibility matrix of possible combinations for composite structures.For achieving gradient properties of additively manufactured metal parts by using composite materials the composition of alloying components in the powder and adapted process strategies are varied. As an alternative to atomizing pre-alloyed materials, mixtures of different powders are investigated. KW - additive manufacturing KW - laser beam melting Y1 - 2012 U6 - https://doi.org/10.1016/j.phpro.2012.10.068 SN - 1875-3892 SN - 1875-3884 VL - 39 SP - 518 EP - 525 PB - Elsevier ER - TY - CHAP A1 - Laumer, Tobias A1 - Karg, Michael Cornelius Hermann A1 - Schmidt, Michael T1 - Neue Prozessstrategien zur Herstellung von Multi-Material-Bauteilen mit Hilfe des Laserstrahlschmelzens T2 - Industriekolloquium des SFB 814, 2, 2013, Nürnberg Y1 - 2013 UR - https://www.researchgate.net/publication/295861222_Neue_Prozessstrategien_zur_Herstellung_von_Multi-Material-Bauteilen_mit_Hilfe_des_Laserstrahlschmelzens SN - 978-3-931864-59-0 PB - Universität Erlangen-Nürnberg, Lehrstuhl für Kunststofftechnik ER - TY - CHAP A1 - Schmailzl, Anton A1 - Quandt, Benjamin A1 - Hierl, Stefan A1 - Schmidt, Michael T1 - Correlation between Joint Strength and Process Temperature in Quasi-Simultaneous Laser Transmission Welding of Polyamide 6 T2 - Proceedings of LiM2019 - Lasers in Manufacturing (23 June 2019, Munich) N2 - The joint strength is gaining importance in quasi -simultaneous laser transmission welds, especially in structural components. A correlation between the joint strength and a process characteristic is a basic requirement for selecting the best process parameter setting. In this work, the temperature is measured during welding polyamide 6 by using a scanner-integrated pyrometer with an InGaAs-detector. The filtering of the heat radiation in the upper joining partner is taken into account by calibrating the mea surement system. By this, the measured temperature signal represents the temperature in the joining zone. A correlation is found between the measured temperature and the resulting joint strength. Moreover, high joint strengths are also seen for welds with short welding times, as far as the temperature is sufficiently high. With this knowledge, a process window can be derived easily in order to produce welds with high strength and short welding times. Y1 - 2019 SP - 1 EP - 10 PB - Wissenschaftliche Gesellschaft Lasertechnik e.V. ER - TY - JOUR A1 - Maiwald, Frederik A1 - Roider, Clemens A1 - Schmidt, Michael A1 - Hierl, Stefan T1 - Optical Coherence Tomography for 3D Weld Seam Localization in Absorber-Free Laser Transmission Welding JF - Applied Sciences N2 - Quality and reliability are of the utmost importance for manufacturing in the optical and medical industries. Absorber-free laser transmission welding enables the precise joining of identical polymers without additives or adhesives and is well-suited to meet the demands of the aforementioned industries. To attain sufficient absorption of laser energy without absorbent additives, thulium fiber lasers, which emit in the polymers’ intrinsic absorption spectrum, are used. Focusing the laser beam with a high numerical aperture provides significant intensity gradients inside the workpiece and enables selective fusing of the internal joining zone without affecting the surface of the device. Because seam size and position are crucial, the high-quality requirements demand internal weld seam monitoring. In this work, we propose a novel method to determine weld seam location and size using optical coherence tomography. Changes in optical material properties because of melting and re-solidification during welding allow for weld seam differentiation from the injection-molded base material. Automatic processing of the optical coherence tomography data enables the identification and measurement of the weld seam geometry. The results from our technique are consistent with microscopic images of microtome sections and demonstrate that weld seam localization in polyamide 6 is possible with an accuracy better than a tenth of a millimeter. KW - image processing KW - laser transmission welding KW - optical coherence tomography KW - process monitoring KW - transparent polymers Y1 - 2022 U6 - https://doi.org/10.3390/app12052718 N1 - Corresponding author: Frederik Maiwald VL - 12 IS - 5 SP - 1 EP - 11 PB - MPDI CY - Basel ER - TY - CHAP A1 - Laumer, Tobias A1 - Schmidt, Michael A1 - Stichel, Thomas T1 - Correlation Analysis of Different Building Parameters on the Part Properties of Parts Built by Simultaneous Laser Beam Melting of Polymers T2 - Fraunhofer Direct Digital Manufacturing Conference DDMC 2016 : Conference Proceedings, March 2016, Berlin N2 - Simultaneous Laser Beam Melting of polymers (SLBM) allows the generation of multi-material components,consisting of different thermoplastic polymers, within one additive building process. Besides the common advantagesof conventional Laser Beam Melting (LBM), multi-material components built by SLBM can fulfill different productrequirements like different chemical resistances or haptic material properties within a single part. To achieve suchparts, different powder materials are deposited next to each other and preheated a few degrees below their meltingtemperatures by infrared emitters and laser radiation (λ = 10.60 μm), before in the last step the preheated powdersare molten simultaneously by an additional laser source (λ = 1.94 μm). In this paper, different polymer powders likepolypropylene (PP) and polyamide 12 (PA12) are used for the generation of multi-material specimens. By varyingdifferent building parameters according to a specified design of experiments, their influence on the part properties isanalyzed. Important building parameters are the intensity and the irradiation time of the laser beam used for meltingthe preheated powders. Besides using tensile tests to determine the tensile strength and the elongation at break, theaverage part height in dependence of the energy input is analyzed. The overall aim is to specify the correlationbetween different building parameters regarding the energy deposition on the resulting part properties. Y1 - 2016 UR - https://www.researchgate.net/publication/298791419_Correlation_Analysis_of_Different_Building_Parameters_on_the_Part_Properties_of_Parts_Built_by_Simultaneous_Laser_Beam_Melting_of_Polymers PB - Fraunhofer Verlag ER - TY - JOUR A1 - Laumer, Tobias A1 - Stichel, Thomas A1 - Raths, Max A1 - Schmidt, Michael T1 - Analysis of the Influence of Different Flowability on Part Characteristics Regarding the Simultaneous Laser Beam Melting of Polymers JF - Physics Procedia N2 - Powder based Additive Manufacturing technologies offer huge potential for building parts with almost no geometrical restrictions, but both the process controlling as well as the part properties are strongly dependent on different material characteristics of the material, like the flowability. In this work, different weight percentages of nano-scaled silica dioxide particles (Aerosil®) are admixed to pure polyethylene and polypropylene powder and the resulting flowability is determined. Besides using the Hausner ratio as standardized value, the degree of coverage is introduced as a new characteristic to quantify the powder flowability. The degrees of coverage are compared to the Hausner ratios to allow a discussion and evaluation about the different characteristic values. Additionally, tensile bars consisting of polypropylene are generated to determine the porosity by cross sections and the mechanical part properties by tensile testing. As mechanical part properties, the tensile strength and elongation at break are determined and the effects of different powder flowability on these properties are analyzed. KW - additive manufacturing KW - laser beam melting of polymers KW - material qualification Y1 - 2016 U6 - https://doi.org/10.1016/j.phpro.2016.08.098 SN - 1875-3892 SN - 1875-3884 VL - 83 SP - 937 EP - 946 PB - Elsevier ER - TY - JOUR A1 - Stichel, Thomas A1 - Frick, Thomas A1 - Laumer, Tobias A1 - Tenner, Felix A1 - Hausotte, Tino A1 - Merklein, Marion A1 - Schmidt, Michael T1 - A Round Robin study for selective laser sintering of polymers: Back tracing of the pore morphology to the process parameters JF - Journal of Materials Processing Technology N2 - The mechanical properties of polymer parts built by Selective Laser Sintering are strongly related to the internal microstructure which differs with the applied production parameters. The paper focuses on the back tracing of the pore morphology of laser sintered polyamide-12 samples to the process parameters. Therefore, a data base is used which is supplied by a Round Robin initiative and includes mechanical tensile tests and the microstructural analysis of the pore morphology of several different sample charges built with different machines. The pore morphologies (porosity, pore density, pore shape and pore arrangement) measured by X-ray computed tomography are compared and discussed regarding the employed parameters and the resulting mechanical properties. The investigations point out that pore density is a superior indicator than porosity for mechanical issues. This is especially valid along the build direction since pore morphology has shown to be strongly anisotropic. Moreover, the analysis revealed that pore density is strongly affected by the process temperature, which is proved to be essential for the fabrication of mechanical robust parts using Selective Laser Sintering. Y1 - 2018 U6 - https://doi.org/10.1016/j.jmatprotec.2017.10.013 VL - 252 IS - February SP - 537 EP - 545 PB - Elsevier ER - TY - CHAP A1 - Laumer, Tobias A1 - Schmidt, Michael A1 - Stichel, Thomas T1 - Influence of temperature gradients on the part properties for the simultaneous laser beam melting of polymers T2 - Proceedings of Laser in Manfacturing Conference 2015, June 22 - June 25, 2015 Munich, Germany N2 - By Laser Beam Melting of polymers (LBM), parts with almost any geometry can be built directly out of CAD files without the need for additional tools. Thus, prototypes or parts in small series production can be generated within short times. Up to now, no multi-material parts have been built by LBM, which is a major limitation of the technology. To realize multi-material parts, new mechanisms for depositing different polymer powders as well as a new irradiation strategy are needed, by which polymers with different melting temperatures can be warmed to their specific preheating temperatures and be molten simultaneously. This is achieved by simultaneous laser beam melting (SLBM). In the process, two different materials are deposited next to each other and preheated a few degrees below their melting temperatures by infrared emitters and laser radiation (λ = 10.60 µm), before in the last step the two preheated powders are molten simultaneously by an additional laser (λ = 1.94 µm). So far, multi-material tensile bars have been realized and analyzed regarding their boundary zone between both materials. The experiments showed that the temperature gradients in the boundary zone and along the building direction seem to be of great importance for the process stability and the resulting part properties. Therefore, a detailed analysis of the occurring temperature gradients during the process is needed to identify adequate process adjustments regarding the temperature controlling. To analyze the temperature gradients, thermocouples positioned inside the powder bed are used. By varying the temperature of the building platform, the influence of different temperature gradients on the resulting part properties is shown. KW - additive manufacturing KW - laser beam melting of polymers KW - multi-material parts Y1 - 2015 UR - https://www.wlt.de/lim/Proceedings/Stick/PDF/Contribution241_final.pdf ER - TY - JOUR A1 - Laumer, Tobias A1 - Stichel, Thomas A1 - Riedlbauer, Daniel A1 - Amend, Philipp A1 - Mergheim, Julia A1 - Schmidt, Michael T1 - Realization of multi-material polymer parts by simultaneous laser beam melting JF - Journal of Laser Micro / Nanoengineering N2 - In this paper, first results regarding the realization of multi-material parts by Simultaneous Laser Beam Melting (SLBM) of polymers are presented. This new approach allows the layerwise generation of parts consisting of different polymer materials within one building process. Besides the typical advantages of additive manufacturing technologies, such parts can fulfill different product requirements concomitant and therefore could enlarge the overall field of application. The powder materials used for this paper are polyethylene (PE) and a polyamide based thermoplastic elastomer (TPE). After depositing the powder materials next to each other, infrared-emitters heat the lower melting polymer and a CO2 laser provides the preheating temperature of the higher melting polymer. In the last step, a thulium fibre laser melts the two preheated powders simultaneously. The realized specimens are characterized by cross sections and their tensile strengths are determined. Additionally, the new approach of the simultaneous energy irradiation is investigated using a Finite Element Analysis in order to gain a more profound process understanding. In that sense, the influence of the size of the exposure area on the reachable maximum temperatures inside that area was analyzed by the simulation and compared to experimental studies. KW - additive manufacturing KW - Multi-Material Parts KW - NewMaterials KW - Simultaneous Laser Beam Melting of Polymers Y1 - 2015 UR - https://www.researchgate.net/publication/274250254_Realization_of_multi-material_polymer_parts_by_simultaneous_laser_beam_melting VL - 10 IS - 2 PB - Japan Laser Processing Society ER - TY - JOUR A1 - Laumer, Tobias A1 - Stichel, Thomas A1 - Amend, Philipp A1 - Schmidt, Michael T1 - Simultaneous laser beam melting of multimaterial polymer parts JF - Journal of Laser Applications N2 - By simultaneous laser beam melting (SLBM), parts consisting of different polymer powders can be additively manufactured within one building process. Besides the advantages of conventional LBM, e.g., not needing additional tools and being able to realize parts with almost any geometry, different product requirements can be achieved within a single part. Product requirements may be different chemical resistances or haptic material properties. Therefore, SLBM enlarges the application field for additive manufacturing in general. In the process, two different materials are deposited on the building platform and preheated a few degrees below the melting temperature of the lower melting polymer by infrared emitters. Afterward, a CO2 laser (λ = 10.6 μm) provides the energy for the temperature difference between the preheating temperatures of both materials. Finally, a digital light processing chip is used to achieve simultaneous and flexible energy deposition for melting both preheated polymers. By illuminating the chip with a laser, parts of the beam can be flexibly guided onto the powder bed or into a beam trap. As laser, a single mode thulium laser (λ = 1.94 μm) is used. After melting the layer, a new layer is deposited and the process starts anew. In this paper, polypropylene and polyamide 12 are used as materials. After analyzing the material and melting behavior during the process by a high-resolution thermal imaging system, the parts are qualified regarding their material compatibility at the boundary zone and porosity by cross sections. KW - additive manufacturing KW - material qualification KW - Multi-Material Parts KW - new processes Y1 - 2015 U6 - https://doi.org/10.2351/1.4906303 SN - 1938-1387 SN - 1042-346X VL - 27 IS - S2 PB - Laser Institute of America ER - TY - CHAP A1 - Laumer, Tobias A1 - Roth, Stephan A1 - Stichel, Thomas A1 - Schmidt, Michael T1 - Strategien zur Erzeugung von dreidimensionalen Multi-Material-Bauteilen T2 - 4. Industriekolloquium des Sonderforschungsbereichs 814 - Additive Fertigung 814, 2015, Nürnberg Y1 - 2015 UR - https://www.researchgate.net/publication/295860904_Strategien_zur_Erzeugung_von_dreidimensionalen_Multi-Material-Bauteilen SN - 978-3931864651 SN - 3931864650 ER - TY - JOUR A1 - Laumer, Tobias A1 - Wudy, Katrin A1 - Drexler, Maximilian A1 - Amend, Philipp A1 - Roth, Stephan A1 - Drummer, Dietmar A1 - Schmidt, Michael T1 - Fundamental investigation of laser beam melting of polymers for additive manufacture JF - Journal of Laser Applications N2 - By selective laser sintering (SLS), polymer powders are molten layer by layer to build conventional prototypes or parts in small series with geometrical freedom that cannot be achieved by other manufacturing technologies. The SLS process is mainly defined by the beam–matter interaction between powder material, laser radiation and different material characteristics by itself. However the determination of these different material characteristics is problematic because powder material imposes certain requirements that cannot sufficiently be provided by conventional measurement methods. Hence new fundamental investigation methods to determine the optical and thermal material characteristics like the thermal diffusivity, thermal conductivity, or the influence of different heating rates on the melting behavior are presented in this paper. The different analysis methods altogether improve the process of understanding to allow recommendations for the future process controlling. Y1 - 2014 U6 - https://doi.org/10.2351/1.4892848 SN - 1938-1387 SN - 1042-346X VL - 26 IS - 4 PB - AIP Publishing ER - TY - CHAP A1 - Laumer, Tobias A1 - Stichel, Thomas A1 - Amend, Philipp A1 - Roth, Stephan A1 - Schmidt, Michael T1 - Analysis of Temperature Gradients during Simultaneous Laser Beam Melting of Polymers T2 - Physics Procedia N2 - By simultaneous laser beam melting (SLBM), different polymer powders can be processed to multi-material parts, which offers the potential to enlarge the field of application for conventional LBM. In a SLBM process, a powder bed consisting of different polymers and therefore with different melting and crystallization temperatures is deposited. Besides the use of infrared emitters for preheating the lower melting polymer, a CO2 laser distributes the necessary preheating temperature of the higher melting polymer. In the last step, a thulium fibre laser distributes the energy necessary for melting the two preheated powders simultaneously. In order to analyze the temperature gradients of the process on the powder surface and in deeper layers, a high-resolution thermal imaging system and thermocouples are used. KW - Additive manufacturing KW - Multi-Material Parts KW - Process Qualification KW - Simultaneous Laser Beam Melting Y1 - 2014 U6 - https://doi.org/10.1016/j.phpro.2014.08.159 VL - 56 SP - 167 EP - 175 PB - Elsevier ER - TY - CHAP A1 - Laumer, Tobias A1 - Stichel, T. A1 - Sachs, M. A1 - Amend, Philipp A1 - Schmidt, Michael ED - Bártolo, Paulo T1 - Qualification and modification of new polymer powders for laser beam melting using Ulbricht spheres T2 - High value manufacturing : Advanced research in virtual and rapid prototyping ; Proceedings of the 6th International Conference on Advanced Research and Rapid Prototyping, Leiraia, Portugal, 1-5 October, 2013 N2 - The restricted amount of available materials for Laser Beam Melting (LBM) of polymers is one of the main limitations for expanding the technology. Current qualification methods deal with problems like inadequate powder flowability or high part porosities among others but do not offer a detailed analysis of the important beam-matter-interaction between powder particles and electro-magnetic laser radiation. In this paper, polyethylene powder is qualified for the LBM process and specifically analyzed regarding the optical material properties of the powder for a wavelength of 10.6 μm. By admixing graphite as absorption intensifier the change of the optical material properties and the thereby connected processing parameters are analyzed. Furthermore an explanation approach is given to explain the relation between different transmittances of different powder particles and the optical material properties of the polymer powders. Y1 - 2014 UR - https://www.researchgate.net/publication/286311000_Qualification_and_modification_of_new_polymer_powders_for_laser_beam_melting_using_Ulbricht_spheres SN - 978-1-138-00137-4 SN - 1138001376 SP - 255 EP - 260 PB - CRC Press CY - Boca Raton ER - TY - JOUR A1 - Geißler, Bastian A1 - Laumer, Tobias A1 - Wübbeke, Andrea A1 - Lakemeyer, Patrick A1 - Frick, Thomas A1 - Schöppner, Volker A1 - Schmidt, Michael T1 - Analysis of the interaction between the temperature field and the weld seam morphology in laser transmission welding by using two different discrete laser wavelengths JF - Journal of Laser Applications N2 - Laser transmission welding is a non-contact and efficient process technology for joining thermoplastic polymers. In the conventional process, laser sources in the wavelength range of 1 μm are usually used. Therefore, most of the laser radiation is transmitted through the upper joining partner and absorbed only in the lower joining partner. As a result, the possibilities to influence the temperature field especially in the upper joining partner are limited. To overcome these limitations, an additional thulium fiber-laser with a wavelength of 1.94 μm is used in this study and coaxially aligned with a diode laser. The use of an additional thulium fiber-laser leads to a significant absorption in the upper joining partner. Through this approach, it is shown that the temperature field and the weld seam geometry can be influenced by using these two different discrete laser wavelengths. Depending on the intensity distribution of both lasers, an increase of the size of the heat affected zone in the upper joining partner can be observed. In order to develop a better process understanding, a thermal finite element model is built up and verified by comparing the calculated size of the heat affected zone for different process parameters with the experimental data. The model is able to represent the influence of both laser sources on the temperature field and is used to calculate characteristics of the temperature field, such as maximum temperatures or cooling rates. The characteristics are then used to explain the weld seam morphology, such as occurrence and size of spherulitic structures in the weld seam. Y1 - 2018 U6 - https://doi.org/10.2351/1.5040617 SN - 1938-1387 VL - 30 IS - 3 PB - AIP Publishing ER - TY - JOUR A1 - Geißler, Bastian A1 - Laumer, Tobias A1 - Wübbeke, Andrea A1 - Frick, Thomas A1 - Schöppner, Volker A1 - Schmidt, Michael T1 - Analysis of the Weld Seam Morphology of Polypropylene in Laser Transmission Welding JF - Journal of Manufacturing Science and Engineering N2 - Laser transmission welding is a well-known joining technology for welding thermoplastics. Although the process is already used industrially, fundamental process-structure-property relationships are not fully understood and are therefore the subject of current research. One aspect of these mentioned process-structure-property relationships is the interaction between the temperature field during the welding process, the weld seam morphology of semi-crystalline thermoplastics, and the weld seam strength. In this study, the influence of the line energy on the weld seam morphology of polypropylenes is analyzed. For this purpose, the size of spherulites in the weld seam is investigated, as well as different occurring phases of polypropylene (a- and b-phase). It is shown that both the spherulite size of the a-phase and the amount of b-phase increase with increasing line energy. For the explanation and discussion of the results, a temperature-dependent thermal simulation model is used to derive characteristic attributes of the temperature field (maximum temperatures, cooling rates, temperature gradients). Y1 - 2018 U6 - https://doi.org/10.1115/1.4040876 VL - 140 IS - 11 PB - ASME ER - TY - CHAP A1 - Amend, Philipp A1 - Mrotzek, Tino A1 - Laumer, Tobias A1 - Wolf, Michel A1 - Roth, Stephan A1 - Gude, Maik A1 - Schmidt, Michael T1 - Experimental Investigations on Laser-based Hot-melt Bonding and Injection Molding for Laser-structured Metal Plastic Hybrids T2 - Laser in Manufacturing (LIM 2017), Munich, Germany N2 - The use of thermoplastics in lightweight construction is continuing to grow. This implies the need for suitable joining techniques to combine thermoplastics with other materials, such as metals, to gain tailored multi-material parts. In this paper latest results of experimental investigations on laser-based hot-melt bonding and injection molding for laser-structured metal plastic hybrids are presented. As materials stainless steel and short-fiber reinforced polyamide are used. The stainless steel surface is structured with a nanosecond pulse laser before joining to improve the mechanical adhesion between the dissimilar materials. Thereby, different structure depths in the range between 16.6 ± 1.2 µm and 66.5 ± 2.5 µm as well as different hatch distances between 70 and 300 µm are realized. The laser-based joining process is carried out irradiating the metallic surface multiple times. Positioned below the metal in T-joint configuration, the thermoplastic melts as a result of heat transfer and acts as hot-melt cohesive. Besides, hybrid joints are manufactured using injection molding. For experiments, the mold temperature as well as the melt temperature are varied. Regardless of the joining process, the hybrid joints are mechanically characterized by tensile tests. The results demonstrate that for both joining processes strong laser-structured metal plastic hybrids can be realized. KW - injection molding KW - laser structuring KW - Laser-based hot-melt bonding KW - multi-material design Y1 - 2017 UR - https://www.researchgate.net/publication/318110636_Experimental_Investigations_on_Laser-based_Hot-melt_Bonding_and_Injection_Molding_for_Laser-structured_Metal_Plastic_Hybrids SN - 978-3-87525-428-0 ER - TY - CHAP A1 - Amend, Philipp A1 - Laumer, Tobias A1 - Roth, Stephan A1 - Baat, Florian A1 - Schmidt, Michael T1 - Investigations on Laser-based Hot-melt Bonding of Additive Manufactured Plastic Parts to Metal Sheets for Strong and Tight Multi-material Joints T2 - Laser in Manufacturing (LIM 2017), Munich, Germany N2 - In this paper, first results regarding the realization of laser-based hot-melt bonding of additive manufactured plastics parts to metal sheets for strong and tight multi-material joints are presented. Compared to earlier investigations, in which nearly solely extruded plastic materials were applied, the use of additive manufactured plastics complements the research field with a promising approach. Besides the typical advantages of multi-material joints regarding weight reduction and high strengths, such parts can meet the needs of constructional freedom and the avoiding of tool costs. Materials used for this paper are aluminum (AlMg3), stainless steel (1.4301) and polyamide 12 (PA12). The performed experiments resulting in multi-material joints between metal and polyamide. The realized specimens undergo a tensile shear test and a tightness test, in which the characteristics of the joints are determined. KW - additive manufacturing KW - Laser-based hot-melt bonding KW - multi-material joint Y1 - 2017 UR - https://www.researchgate.net/publication/318110485_Investigations_on_Laser-based_Hot-melt_Bonding_of_Additive_Manufactured_Plastic_Parts_to_Metal_Sheets_for_Strong_and_Tight_Multi-material_Joint ER - TY - JOUR A1 - Osmanlic, Fuad A1 - Wudy, Katrin A1 - Laumer, Tobias A1 - Schmidt, Michael A1 - Drummer, Dietmar A1 - Körner, Carolin T1 - Modeling of Laser Beam Absorption in a Polymer Powder Bed JF - Polymers N2 - In order to understand the absorption characteristic, a ray trace model is developed by taking into account the reflection, absorption and refraction. The ray paths are resolved on a sub-powder grid. For validation, the simulation results are compared to analytic solutions of the irradiation of the laser beam onto a plain surface. In addition, the absorptance, reflectance and transmittance of PA12 powder layers measured by an integration sphere setup are compared with the numerical results of our model. It is shown that the effective penetration depth can be lower than the penetration depth in bulk material for polymer powders and, therefore, can increase the energy density at the powder bed surface. The implications for modeling of the selective laser sintering (SLS) process and the processability of fine powder distributions and high powder bed densities are discussed. KW - additive manufacturing KW - laser absorption KW - PA12 KW - polyamide 12 KW - powder bed Y1 - 2018 U6 - https://doi.org/10.3390/polym10070784 VL - 10 IS - 7 SP - 1 EP - 11 PB - MDPI ER - TY - JOUR A1 - Stichel, Thomas A1 - Frick, Thomas A1 - Laumer, Tobias A1 - Tenner, Felix A1 - Hausotte, Tino A1 - Merklein, Marion A1 - Schmidt, Michael T1 - A Round Robin study for Selective Laser Sintering of polyamide 12: Microstructural origin of the mechanical properties JF - Optics & Laser Technology N2 - The mechanical and microstructural investigation of polymer parts (polyamide 12) fabricated by Selective Laser Sintering as part of a Round Robin initiative is presented. The paper focuses on the microstructural analysis of the Round Robin samples and their evaluation regarding their effect on mechanical properties with respect to each other. Therefore optical microscopy on microtomed samples, X-ray computed tomography and Differential Scanning Calorimetry is used to determine the morphology of residual particle cores and of internal pores. Y1 - 2017 U6 - https://doi.org/10.1016/j.optlastec.2016.09.042 VL - 89 SP - 31 EP - 40 PB - Elsevier ER - TY - JOUR A1 - Stichel, Thomas A1 - Laumer, Tobias A1 - Schmidt, Michael T1 - Simulation des (quasi-)simultanen Laserstrahlschmelzens zur Herstellung von Multi-Material-Bauteilen aus Polymeren JF - Rapid.Tech + FabCon 3.D - International Trade Show + Conference for Additive Manufacturing Y1 - 2018 U6 - https://doi.org/10.3139/9783446458123.020 SP - 312 EP - 329 PB - Hanser ER - TY - CHAP A1 - Schmailzl, Anton A1 - Hierl, Stefan A1 - Schmidt, Michael ED - Schmidt, Michael T1 - Gap-Bridging during Quasi-Simultaneous Laser Transmission Welding T2 - Physics Procedia N2 - Tightness is often the main requirement for quasi-simultaneous laser transmission welds. However, remaining gaps cannot be detected by the used set-path monitoring. By using a pyrometer in combination with a 3D-scanner, weld seam interruptions can be localized precisely while welding, due to temperature deviations along the weld contour. To analyze the temperature signal in correlation to the progress of gap-bridging, T-joint samples with predefined gaps are welded. The set-path is measured synchronously. Additionally, the temperature distribution and the influence of the thermal expansion of the polymers are studied by a thermo-mechanical FEM-process simulation. On top of that, the melt blow-out of the welded samples is analyzed using μCT-measurements. The experiments have shown that closing of a gap can be identified reliably by the temperature signal and that the squeezed melt flow into the gap and the thermal expansion in the gap zone accelerates gap-bridging. Furthermore the inserted heat can be adapted in the fault zone, in order to avoid thermal damage. Y1 - 2016 U6 - https://doi.org/10.1016/j.phpro.2016.08.113 SN - 1875-3892 SN - 1875-3884 VL - 83 SP - 1073 EP - 1082 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - CHAP A1 - Schmailzl, Anton A1 - Quandt, Benjamin A1 - Schmidt, Michael A1 - Hierl, Stefan T1 - In-Situ Process Monitoring during Laser Transmission Welding of PA6-GF30 T2 - Procedia CIRP N2 - Quasi-simultaneous laser transmission welding is preferably used for packaging sensors and electronics. In order to protect the components from moisture, a hermetic encapsulation is needed. However, local weld seam interruptions cannot be identified with the commonly used set-path monitoring. By using a pyrometer, coaxially integrated into a 3D-scanner, gaps between the joining partners can be allocated on basis of the measured temperature. However, the scattering of the heat radiation, especially caused by the fiber reinforcement of the plastics, leads to a reduction of the accessible heat radiation, which makes the identification of gaps considerably more difficult. The herein used experimental setup is characterized by a small detection spot and only by a slight weakening of the heat radiation inside the scanner. Hence, for welding PA6-GF30, the detection of small sized gaps is possible, even if a glass fiber content of 30 percent (wt.) and a weld seam width with approximately 1 mm are given. Y1 - 2018 U6 - https://doi.org/10.1016/j.procir.2018.08.131 VL - 74 SP - 524 EP - 527 ER - TY - JOUR A1 - Wall, Simone A1 - Krenzer, Boris A1 - Wippermann, Stefan A1 - Sanna, Simone A1 - Klasing, Friedrich A1 - Hanisch-Blicharski, Anja A1 - Kammler, Martin A1 - Schmidt, Wolf Gero A1 - Horn-von Hoegen, Michael T1 - Atomistic picture of charge density wave formation at surfaces JF - Physical review letters N2 - We used ultrafast electron diffraction and density-functional theory calculations to gain insight into the charge density wave (CDW) formation on In/Si(111). Weak excitation by a femtosecond-laser pulse results in the melting of the CDW. The immediate freezing is hindered by a barrier for the motion of atoms during the phase transition: The melted CDW constitutes a long-lived, supercooled phase and is strong evidence for a first-order transition. The freezing into the CDW is triggered by preexisting adsorbates. Starting at these condensation nuclei, the CDW expands one dimensionally on the In/Si(111) surface, with a constant velocity of more than 80 m/s. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevLett.109.186101 VL - 109 IS - 18 PB - APS ER - TY - JOUR A1 - Frigge, Tim A1 - Wall, S. A1 - Krenzer, B. A1 - Wippermann, St. A1 - Sanna, S. A1 - Klasing, F. A1 - Hanisch-Blicharski, Anja A1 - Kammler, Martin A1 - Schmidt, W. G. A1 - Horn-von Hoegen, Michael T1 - Abstract - A Reply to the Comment by H. Shim et al. JF - Physical review letters Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevLett.111.149602 VL - 111 IS - 14 PB - American Physical Society ER - TY - JOUR A1 - Klein, C. A1 - Nabbefeld, T. A1 - Hattab, H. A1 - Meyer, D. A1 - Jnawali, G. A1 - Kammler, Martin A1 - Meyer zu Heringdorf, Frank-Joachim A1 - Golla-Franz, A. A1 - Müller, B. H. A1 - Schmidt, Th A1 - Henzler, M. A1 - Horn-von Hoegen, Michael T1 - Lost in reciprocal space? Determination of the scattering condition in spot profile analysis low-energy electron diffraction JF - Review of scientific instruments N2 - The precise knowledge of the diffraction condition, i.e., the angle of incidence and electron energy, is crucial for the study of surface morphology through spot profile analysis low-energy electron diffraction (LEED). We demonstrate four different procedures to determine the diffraction condition: employing the distortion of the LEED pattern under large angles of incidence, the layer-by-layer growth oscillations during homoepitaxial growth, a G(S) analysis of a rough surface, and the intersection of facet rods with 3D Bragg conditions. Y1 - 2011 U6 - https://doi.org/10.1063/1.3554305 VL - 82 IS - 3 PB - American Institute of Physics ER - TY - JOUR A1 - Schmidt, Thomas A1 - Kröger, Roland A1 - Flege, Jan Ingo A1 - Horn-von Hoegen, Michael A1 - Clausen, T. A1 - Falta, J. A1 - Janzen, Aandreas A1 - Zahl, P. A1 - Kury, P. A1 - Kammler, Martin T1 - Less strain energy despite fewer misfit dislocations: the impact of ordering JF - Physical review letters N2 - The average strain state of Ge films grown on Si(111) by surfactant mediated epitaxy has been compared to the ordering of the interfacial misfit dislocation network. Surprisingly, a smaller degree of average lattice relaxation was found in films grown at higher temperature. On the other hand, these films exhibit a better ordered dislocation network. This effect energetically compensates the higher strain at higher growth temperature, leading to the conclusion that, apart from the formation of misfit dislocations, their ordering represents an important channel for lattice-strain energy relaxation. Y1 - 2006 U6 - https://doi.org/10.1103/PhysRevLett.96.066101 VL - 96 IS - 6 PB - APS ER - TY - JOUR A1 - Schmidt, Th. A1 - Kröger, R. A1 - Clausen, T. A1 - Falta, J. A1 - Janzen, A. A1 - Kammler, Martin A1 - Kury, P. A1 - Zahl, P. A1 - Horn-von Hoegen, Michael T1 - Surfactant-mediated epitaxy of Ge on Si(111): Beyond the surface JF - Applied Physics Letters N2 - For a characterization of interface and “bulk” properties of Ge films grown on Si(111) by Sb surfactant-mediated epitaxy, grazing incidence x-ray diffraction and transmission electron microscopy have been used. The interface roughness, defect structure, and strain state have been investigated in dependence of film thickness and growth temperature. For all growth parameters, atomically smooth interfaces are observed. For thin Ge layers, about 75% of the strain induced by the lattice mismatch is relaxed by misfit dislocations at the Ge/Si interface. Only a slight increase of the degree of relaxation is found for thicker films. At growth temperatures below about 600 °C, the formation of twins is observed, which can be avoided at higher temperatures. Y1 - 2005 U6 - https://doi.org/10.1063/1.1882760 VL - 86 IS - 11 PB - AIP ER - TY - CHAP A1 - Schmailzl, Anton A1 - Geißler, Bastian A1 - Maiwald, Frederik A1 - Laumer, Tobias A1 - Schmidt, Michael A1 - Hierl, Stefan ED - Esen, Cermal T1 - Transformation of Weld Seam Geometry in Laser Transmission Welding by Using an Additional Integrated Thulium Fiber Laser T2 - Lasers in Manufacturing - LIM 2017, Conference Proceedings Y1 - 2017 N1 - CD-ROM SP - 1 EP - 10 CY - München ER - TY - CHAP A1 - Laumer, Tobias A1 - Stichel, Thomas A1 - Bock, Thomas A1 - Amend, Philipp A1 - Schmidt, Michael T1 - Characterization of temperature-dependent optical material properties of polymer powders T2 - AIP Conference Proceedings N2 - In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystalline thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders. KW - laser beam melting KW - material qualification KW - Optical Material Properties KW - Polymers Y1 - 2014 U6 - https://doi.org/10.1063/1.4918508 IS - 1 PB - AIP Publishing ER - TY - JOUR A1 - Schmidt, Oliver G. A1 - Denker, Ullrich A1 - Dashiell, Michael W. A1 - Jin-Phillipp, Neng Yun A1 - Eberl, Karl A1 - Schreiner, Rupert A1 - Gräbeldinger, Hedwig A1 - Schweizer, Heinz C. A1 - Christiansen, Silke H. A1 - Ernst, Frank T1 - Laterally aligned Ge/Si islands: a new concept for faster field-effect transistors JF - Materials Science and Engineering B N2 - Self-assembled and coherently strained Ge dots were grown on a Si/SiGe superlattice, which was deposited on a flat Si(001) substrate surface patterned with a regular array of straight trenches. The superlattice translates the surface modulation of the substrate into a strain-field modulation, which causes the Ge dots on its surface to form along straight lines above the buried trenches. This approach provides self-assembled Ge dots with excellent lateral periodicity, which might be useful for fabricating dot-based field-effect-transistors (DotFETs). Here, we propose the concept of a modulation-doped p-channel DotFET (p-MOD-DotFET). The p-MOD-DotFET relies on embedded Ge-rich nanostructures, which provide p-channels through the Ge-rich dots. A high Ge concentration in the dots is desirable in order to exploit the high hole mobility of Ge-rich material. We show that the commonly observed Si–Ge intermixing during Si capping of Ge dots can be suppressed by overgrowing the islands at low temperature. KW - Field-effect transistor KW - Self-assembly islands KW - CMOS KW - MOSFET KW - MOFDET alignment KW - Modulation Y1 - 2002 U6 - https://doi.org/10.1016/S0921-5107(01)00810-8 SN - 1873-4944 SN - 0921-5107 VL - 89 IS - 1-3 SP - 101 EP - 105 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Weber, Karsten A1 - Dendorfer, Sebastian A1 - Süß, Franz A1 - Kubowitsch, Simone A1 - Schratzenstaller, Thomas A1 - Haug, Sonja A1 - Mohr, Christa A1 - Kiesl, Hans A1 - Drechsler, Jörg A1 - Westner, Markus A1 - Kobus, Jörn A1 - Schubert, Martin J. W. A1 - Zenger, Stefan A1 - Pietsch, Alexander A1 - Weiß, Josef A1 - Hinterseer, Sebastian A1 - Schieck, Roland A1 - Scherzinger, Stefanie A1 - Klettke, Meike A1 - Ringlstetter, Andreas A1 - Störl, Uta A1 - Bissyandé, Tegawendé F. A1 - Seeburger, Achim A1 - Schindler, Timo A1 - Ramsauer, Ralf A1 - Kiszka, Jan A1 - Kölbl, Andreas A1 - Lohmann, Daniel A1 - Mauerer, Wolfgang A1 - Maier, Johannes A1 - Scorna, Ulrike A1 - Palm, Christoph A1 - Soska, Alexander A1 - Mottok, Jürgen A1 - Ellermeier, Andreas A1 - Vögele, Daniel A1 - Hierl, Stefan A1 - Briem, Ulrich A1 - Buschmann, Knut A1 - Ehrlich, Ingo A1 - Pongratz, Christian A1 - Pielmeier, Benjamin A1 - Tyroller, Quirin A1 - Monkman, Gareth J. A1 - Gut, Franz A1 - Roth, Carina A1 - Hausler, Peter A1 - Bierl, Rudolf A1 - Prommesberger, Christian A1 - Ławrowski, Robert Damian A1 - Langer, Christoph A1 - Schreiner, Rupert A1 - Huang, Yifeng A1 - She, Juncong A1 - Ottl, Andreas A1 - Rieger, Walter A1 - Kraml, Agnes A1 - Poxleitner, Thomas A1 - Hofer, Simon A1 - Heisterkamp, Benjamin A1 - Lerch, Maximilian A1 - Sammer, Nike A1 - Golde, Olivia A1 - Wellnitz, Felix A1 - Schmid, Sandra A1 - Muntschick, Claudia A1 - Kusterle, Wolfgang A1 - Paric, Ivan A1 - Brückl, Oliver A1 - Haslbeck, Matthias A1 - Schmidt, Ottfried A1 - Schwanzer, Peter A1 - Rabl, Hans-Peter A1 - Sterner, Michael A1 - Bauer, Franz A1 - Steinmann, Sven A1 - Eckert, Fabian A1 - Hofrichter, Andreas ED - Baier, Wolfgang T1 - Forschungsbericht 2017 T3 - Forschungsberichte der OTH Regensburg - 2017 KW - Forschung KW - Forschungsbericht Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-13835 SN - 978-3-9818209-3-5 CY - Regensburg ER - TY - CHAP A1 - Laumer, Tobias A1 - Stichel, Thomas A1 - Amend, Philipp A1 - Schmidt, Michael A1 - Gachot, A. T1 - Simultaneous Energy Deposition for Laser Beam Melting of Polymers T2 - Proceedings of the Polymer Processing Society 29th Annual Meeting, Nürnberg, 2013 Y1 - 2013 PB - American Institute of Physics CY - New York ER - TY - CHAP A1 - Maiwald, Frederik A1 - Kroth, Lea A1 - Laskin, Alexander A1 - Hierl, Stefan A1 - Schmidt, Michael T1 - Enlarging the process window in absorber-free laser transmission welding of polymer foils using tailored laser intensity distribution T2 - Procedia CIRP Y1 - 2024 N1 - accepted by publisher ER -