TY - GEN A1 - Scheppach, Markus W. A1 - Rauber, David A1 - Zingler, C. A1 - Weber Nunes, Danilo A1 - Probst, Andreas A1 - Römmele, Christoph A1 - Nagl, Sandra A1 - Ebigbo, Alanna A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Instrumentenerkennung während der endoskopischen Submukosadissektion mittels künstlicher Intelligenz T2 - Zeitschrift für Gastroenterologie N2 - Einleitung: Die endoskopische Submukosadissektion (ESD) ist eine komplexe Technik zur Resektion gastrointestinaler Frühneoplasien. Dabei werden für die verschiedenen Schritte der Intervention spezifische endoskopische Instrumente verwendet. Die präzise und automatische Erkennung und Abgrenzung der verwendeten Instrumente (Injektionsnadeln, elektrochirurgische Messer mit unterschiedlichen Konfigurationen, hämostatische Zangen) könnte wertvolle Informationen über den Fortschritt und die Verfahrensmerkmale der ESD liefern und eine automatische standardisierte Berichterstattung ermöglichen. Ziele: Ziel dieser Studie war die Entwicklung eines KI-Algorithmus zur Erkennung und Delineation von endoskopischen Instrumenten bei der ESD. Methodik: 17 ESD-Videos (9×rektal, 5×ösophageal, 3×gastrisch) wurden retrospektiv zusammengestellt. Auf 8530 Einzelbilder dieser Videos wurden durch 2 Studienmitarbeiter die folgenden Klassen eingezeichnet: Hakenmesser – Spitze, Hakenmesser – Katheter, Nadelmesser – Spitze und – Katheter, Injektionsnadel -Spitze und – Katheter sowie hämostatische Zange – Spitze und – Katheter. Der annotierte Datensatz wurde zum Training eines DeepLabV3+-Deep-Learning-Algorithmus mit ConvNeXt-Backbone zur Erkennung und Abgrenzung der genannten Klassen verwendet. Die Evaluation erfolgte durch 5-fache interne Kreuzvalidierung. Ergebnis: Die Validierung auf Einzelpixelbasis ergab insgesamt einen F1-Score von 0,80, eine Sensitivität von 0,81 und eine Spezifität von 1,00. Es wurden F1-Scores von 1,00, 0,97, 0,80, 0,98, 0,85, 0,97, 0,80, 0,51 bzw. 0,85 für die Klassen Hakenmesser – Katheter und – Spitze, Nadelmesser – Katheter und – Spitze, Injektionsnadel – Katheter und – Spitze, hämostatische Zange – Katheter und – Spitze gemessen. Schlussfolgerung: In dieser Studie wurden die wichtigsten endoskopischen Instrumente, die während der ESD verwendet werden, mit hoher Genauigkeit erkannt. Die geringere Leistung bei der hämostatische Zange – Katheter kann auf die Unterrepräsentation dieser Klassen in den Trainingsdaten zurückgeführt werden. Zukünftige Studien werden sich auf die Erweiterung der Instrumentenklassen sowie auf die Ausbalancierung der Trainingsdaten konzentrieren. Y1 - 2025 U6 - https://doi.org/10.1055/s-0045-1811092 VL - 63 IS - 8 PB - Thieme ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Artificial Intelligence (AI) – assisted vessel and tissue recognition during third space endoscopy (Smart ESD) T2 - Zeitschrift für Gastroenterologie N2 - Clinical setting  Third space procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex minimally invasive techniques with an elevated risk for operator-dependent adverse events such as bleeding and perforation. This risk arises from accidental dissection into the muscle layer or through submucosal blood vessels as the submucosal cutting plane within the expanding resection site is not always apparent. Deep learning algorithms have shown considerable potential for the detection and characterization of gastrointestinal lesions. So-called AI – clinical decision support solutions (AI-CDSS) are commercially available for polyp detection during colonoscopy. Until now, these computer programs have concentrated on diagnostics whereas an AI-CDSS for interventional endoscopy has not yet been introduced. We aimed to develop an AI-CDSS („Smart ESD“) for real-time intra-procedural detection and delineation of blood vessels, tissue structures and endoscopic instruments during third-space endoscopic procedures. Characteristics of Smart ESD  An AI-CDSS was invented that delineates blood vessels, tissue structures and endoscopic instruments during third-space endoscopy in real-time. The output can be displayed by an overlay over the endoscopic image with different modes of visualization, such as a color-coded semitransparent area overlay, or border tracing (demonstration video). Hereby the optimal layer for dissection can be visualized, which is close above or directly at the muscle layer, depending on the applied technique (ESD or POEM). Furthermore, relevant blood vessels (thickness> 1mm) are delineated. Spatial proximity between the electrosurgical knife and a blood vessel triggers a warning signal. By this guidance system, inadvertent dissection through blood vessels could be averted. Technical specifications  A DeepLabv3+ neural network architecture with KSAC and a 101-layer ResNeSt backbone was used for the development of Smart ESD. It was trained and validated with 2565 annotated still images from 27 full length third-space endoscopic videos. The annotation classes were blood vessel, submucosal layer, muscle layer, electrosurgical knife and endoscopic instrument shaft. A test on a separate data set yielded an intersection over union (IoU) of 68%, a Dice Score of 80% and a pixel accuracy of 87%, demonstrating a high overlap between expert and AI segmentation. Further experiments on standardized video clips showed a mean vessel detection rate (VDR) of 85% with values of 92%, 70% and 95% for POEM, rectal ESD and esophageal ESD respectively. False positive measurements occurred 0.75 times per minute. 7 out of 9 vessels which caused intraprocedural bleeding were caught by the algorithm, as well as both vessels which required hemostasis via hemostatic forceps. Future perspectives  Smart ESD performed well for vessel and tissue detection and delineation on still images, as well as on video clips. During a live demonstration in the endoscopy suite, clinical applicability of the innovation was examined. The lag time for processing of the live endoscopic image was too short to be visually detectable for the interventionist. Even though the algorithm could not be applied during actual dissection by the interventionist, Smart ESD appeared readily deployable during visual assessment by ESD experts. Therefore, we plan to conduct a clinical trial in order to obtain CE-certification of the algorithm. This new technology may improve procedural safety and speed, as well as training of modern minimally invasive endoscopic resection techniques. KW - Artificial Intelligence KW - Medical Image Computing KW - Endoscopy KW - Bildgebendes Verfahren KW - Medizin KW - Künstliche Intelligenz KW - Endoskopie Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1755110 VL - 60 IS - 08 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Meinikheim, Michael A1 - Yip, Hon Chi A1 - Lau, Louis Ho Shing A1 - Chiu, Philip Wai Yan A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Effekt eines Künstliche Intelligenz (KI) – Algorithmus auf die Gefäßdetektion bei third space Endoskopien T2 - Zeitschrift für Gastroenterologie N2 - Einleitung  Third space Endoskopieprozeduren wie die endoskopische Submukosadissektion (ESD) und die perorale endoskopische Myotomie (POEM) sind technisch anspruchsvoll und gehen mit untersucherabhängigen Komplikationen wie Blutungen und Perforationen einher. Grund hierfür ist die unabsichtliche Durchschneidung von submukosalen Blutgefäßen ohne präemptive Koagulation. Ziele Die Forschungsfrage, ob ein KI-Algorithmus die intraprozedurale Gefäßerkennung bei ESD und POEM unterstützen und damit Komplikationen wie Blutungen verhindern könnte, erscheint in Anbetracht des erfolgreichen Einsatzes von KI bei der Erkennung von Kolonpolypen interessant. Methoden  Auf 5470 Einzelbildern von 59 third space Endoscopievideos wurden submukosale Blutgefäße annotiert. Zusammen mit weiteren 179.681 nicht-annotierten Bildern wurde ein DeepLabv3+neuronales Netzwerk mit dem ECMT-Verfahren für semi-supervised learning trainiert, um Blutgefäße in Echtzeit erkennen zu können. Für die Evaluation wurde ein Videotest mit 101 Videoclips aus 15 vom Trainingsdatensatz separaten Prozeduren mit 200 vordefinierten Gefäßen erstellt. Die Gefäßdetektionsrate, -zeit und -dauer, definiert als der Prozentsatz an Einzelbildern eines Videos bezogen auf den Goldstandard, auf denen ein definiertes Gefäß erkannt wurde, wurden erhoben. Acht erfahrene Endoskopiker wurden mithilfe dieses Videotests im Hinblick auf Gefäßdetektion getestet, wobei eine Hälfte der Videos nativ, die andere Hälfte nach Markierung durch den KI-Algorithmus angesehen wurde. Ergebnisse  Der mittlere Dice Score des Algorithmus für Blutgefäße war 68%. Die mittlere Gefäßdetektionsrate im Videotest lag bei 94% (96% für ESD; 74% für POEM). Die mediane Gefäßdetektionszeit des Algorithmus lag bei 0,32 Sekunden (0,3 Sekunden für ESD; 0,62 Sekunden für POEM). Die mittlere Gefäßdetektionsdauer lag bei 59,1% (60,6% für ESD; 44,8% für POEM) des Goldstandards. Alle Endoskopiker hatten mit KI-Unterstützung eine höhere Gefäßdetektionsrate als ohne KI. Die mittlere Gefäßdetektionsrate ohne KI lag bei 56,4%, mit KI bei 71,2% (p<0.001). Schlussfolgerung  KI-Unterstützung war mit einer statistisch signifikant höheren Gefäßdetektionsrate vergesellschaftet. Die mediane Gefäßdetektionszeit von deutlich unter einer Sekunde sowie eine Gefäßdetektionsdauer von größer 50% des Goldstandards wurden für den klinischen Einsatz als ausreichend erachtet. In prospektiven Anwendungsstudien sollte der KI-Algorithmus auf klinische Relevanz getestet werden. KW - Künstliche Intelligenz Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1771980 VL - 61 IS - 08 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Probst, Andreas A1 - Scheppach, Markus W. A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Ebigbo, Alanna T1 - Barrett-Ampel T2 - Zeitschrift für Gastroenterologie N2 - Hintergrund  Adenokarzinome des Ösophagus sind bis heute mit einer infausten Prognose vergesellschaftet (1). Obwohl Endoskopiker mit Barrett-Ösophagus als Präkanzerose konfrontiert werden, ist vor allem für nicht-Experten die Differenzierung zwischen Barrett-Ösophagus ohne Dysplasie und assoziierten Neoplasien mitunter schwierig. Existierende Biopsieprotokolle (z.B. Seattle Protokoll) sind oftmals unzuverlässig (2). Eine frühzeitige Diagnose des Adenokarzinoms ist allerdings von fundamentaler Bedeutung für die Prognose des Patienten. Forschungsansatz  Auf der Grundlage dieser Problematik, entwickelten wir in Kooperation mit dem Forschungslabor „Regensburg Medical Image Computing (ReMIC)“ der OTH Regensburg ein auf künstlicher Intelligenz (KI) basiertes Entscheidungsunterstützungssystem (CDSS). Das auf einer DeepLabv3+ neuronalen Netzwerkarchitektur basierende CDSS differenziert mittels Mustererkennung Barrett- Ösophagus ohne Dysplasie von Barrett-Ösophagus mit Dysplasie bzw. Neoplasie („Klassifizierung“). Hierbei werden gemittelte Ausgabewahrscheinlichkeiten mit einem vom Benutzer definierten Schwellenwert verglichen. Für Vorhersagen, die den Schwellenwert überschreiten, berechnen wir die Kontur der Region und die Fläche. Sobald die vorhergesagte Läsion eine bestimmte Größe in der Eingabe überschreitet, heben wir sie und ihren Umriss hervor. So ermöglicht eine farbkodierte Visualisierung eine Abgrenzung zwischen Dysplasie bzw. Neoplasie und normalem Barrett-Epithel („Segmentierung“). In einer Studie an Bildern in „Weißlicht“ (WL) und „Narrow Band Imaging“ (NBI) demonstrierten wir eine Sensitivität von mehr als 90% und eine Spezifität von mehr als 80% (3). In einem nächsten Schritt, differenzierte unser KI-Algorithmus Barrett- Metaplasien von assoziierten Neoplasien anhand von zufällig abgegriffenen Bildern in Echtzeit mit einer Accuracy von 89.9% (4). Darauf folgend, entwickelten wir unser System dahingehend weiter, dass unser Algorithmus nun auch dazu in der Lage ist, Untersuchungsvideos in WL, NBI und „Texture and Color Enhancement Imaging“ (TXI) in Echtzeit zu analysieren (5). Aktuell führen wir eine Studie in einem randomisiert-kontrollierten Ansatz an unveränderten Untersuchungsvideos in WL, NBI und TXI durch. Ausblick  Um Patienten mit aus Barrett-Metaplasien resultierenden Neoplasien frühestmöglich an „High-Volume“-Zentren überweisen zu können, soll unser KI-Algorithmus zukünftig vor allem Endoskopiker ohne extensive Erfahrung bei der Beurteilung von Barrett- Ösophagus in der Krebsfrüherkennung unterstützen. KW - Barrett-Ösophagus KW - Adenokarzinom KW - Künstliche Intelligenz KW - Speiseröhrenkrebs KW - Diagnose KW - Künstliche Intelligenz Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1755109 VL - 60 IS - 08 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Intraprozedurale Strukturerkennung bei Third-Space Endoskopie mithilfe eines Deep-Learning Algorithmus T2 - Zeitschrift für Gastroenterologie N2 - Einleitung Third-Space Interventionen wie die endoskopische Submukosadissektion (ESD) und die perorale endoskopische Myotomie (POEM) sind technisch anspruchsvoll und mit einem erhöhten Risiko für intraprozedurale Komplikationen wie Blutung oder Perforation assoziiert. Moderne Computerprogramme zur Unterstützung bei diagnostischen Entscheidungen werden unter Einsatz von künstlicher Intelligenz (KI) in der Endoskopie bereits erfolgreich eingesetzt. Ziel der vorliegenden Arbeit war es, relevante anatomische Strukturen mithilfe eines Deep-Learning Algorithmus zu detektieren und segmentieren, um die Sicherheit und Anwendbarkeit von ESD und POEM zu erhöhen. Methoden Zwölf Videoaufnahmen in voller Länge von Third-Space Endoskopien wurden aus der Datenbank des Universitätsklinikums Augsburg extrahiert. 1686 Einzelbilder wurden für die Kategorien Submukosa, Blutgefäß, Dissektionsmesser und endoskopisches Instrument annotiert und segmentiert. Mit diesem Datensatz wurde ein DeepLabv3+neuronales Netzwerk auf der Basis eines ResNet mit 101 Schichten trainiert und intern anhand der Parameter Intersection over Union (IoU), Dice Score und Pixel Accuracy validiert. Die Fähigkeit des Algorithmus zur Gefäßdetektion wurde anhand von 24 Videoclips mit einer Spieldauer von 7 bis 46 Sekunden mit 33 vordefinierten Gefäßen evaluiert. Anhand dieses Tests wurde auch die Gefäßdetektionsrate eines Experten in der Third-Space Endoskopie ermittelt. Ergebnisse Der Algorithmus zeigte eine Gefäßdetektionsrate von 93,94% mit einer mittleren Rate an falsch positiven Signalen von 1,87 pro Minute. Die Gefäßdetektionsrate des Experten lag bei 90,1% ohne falsch positive Ergebnisse. In der internen Validierung an Einzelbildern wurde eine IoU von 63,47%, ein mittlerer Dice Score von 76,18% und eine Pixel Accuracy von 86,61% ermittelt. Zusammenfassung Dies ist der erste KI-Algorithmus, der für den Einsatz in der therapeutischen Endoskopie entwickelt wurde. Präliminäre Ergebnisse deuten auf eine mit Experten vergleichbare Detektion von Gefäßen während der Untersuchung hin. Weitere Untersuchungen sind nötig, um die Leistung des Algorithmus im Vergleich zum Experten genauer zu eruieren sowie einen möglichen klinischen Nutzen zu ermitteln. KW - Deep Learning KW - Third-Space Endoscopy Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1745652 VL - 60 IS - 04 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Roser, David A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Palm, Christoph A1 - Muzalyova, Anna A1 - Rauber, David A1 - Rückert, Tobias A1 - Parsa, Nasim A1 - Byrne, Michael F. A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Mensch-Maschine-Interaktion: Einfluss künstlicher Intelligenz auf das diagnostische Vertrauen von Endoskopikern bei der Beurteilung des Barrett-Ösophagus T2 - Zeitschrift für Gastroenterologie N2 - Ziele:  Das Ziel der Studie war es, den Einfluss von KI auf die diagnostische Sicherheit (Konfidenzniveau) von Endoskopikern anhand von BÖ-Videos zu untersuchen und mögliche Korrelationen mit der Untersuchungsqualität zu erforschen. Methodik:  22 Endoskopiker aus zwölf Zentren mit unterschiedlicher Barrett-Erfahrung untersuchten 96 standardisierte Endoskopievideos. Die Untersucher wurden in Experten und Nicht-Experten eingeteilt und nach dem Zufallsprinzip für die Bewertung der Videos mit oder ohne KI eingeteilt. Die Teilnehmer wurden in zwei Gruppen aufgeteilt: Arm A bewertete zunächst Videos ohne KI und dann mit KI, während Arm B die umgekehrte Reihenfolge einhielt. Die Untersucher hatten die Aufgabe, BÖ-assoziierte Neoplasien zu erkennen und ihr Konfidenzniveau sowohl mit als auch ohne KI auf einer Skala von 0 bis 9 anzugeben. Ergebnis:  In Arm A erhöhte der Einsatz von KI das Konfidenzniveau bei beiden signifikant (p<0.001). Bemerkenswert ist, dass jedoch nur Nicht-Experten durch die KI eine signifikante Verbesserung der Sensitivität und Spezifität (p<0.001 bzw. p<0.05) erfuhren. Während Experten ohne KI im Vergleich zu Nicht-Experten mit KI ein höheres Konfidenzniveau aufwiesen, gab es keinen signifikanten Unterschied in der Genauigkeit. In Arm B zeigten beide Gruppen eine signifikante Abnahme des Konfidenzniveaus (p<0.001) bei gleichbleibender Genauigkeit. Darüber hinaus wurden in 9% der Entscheidungen trotz korrekter KI eine falsche Wahl getroffen. Schlussfolgerung:  Der Einsatz künstlicher Intelligenz steigerte das Konfidenzniveau sowohl bei Experten als auch bei Nicht-Experten signifikant – ein Effekt, der im Studienmodell reversibel war. Darüber hinaus wiesen Experten mit oder ohne KI durchweg höhere Konfidenzniveaus auf als Nicht-Experten mit KI, trotz vergleichbarer Ergebnisse. Zudem konnte beobachtet werden, dass die Untersucher in 9% der Fälle die KI zuungunsten des Patienten ignorierten. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1789656 VL - 62 IS - 09 SP - e575 EP - e576 PB - Georg Thieme Verlag KG ER - TY - JOUR A1 - Souza Jr., Luis Antonio de A1 - Pacheco, André G.C. A1 - Passos, Leandro A. A1 - Santana, Marcos Cleison S. A1 - Mendel, Robert A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Papa, João Paulo T1 - DeepCraftFuse: visual and deeply-learnable features work better together for esophageal cancer detection in patients with Barrett’s esophagus JF - Neural Computing and Applications N2 - Limitations in computer-assisted diagnosis include lack of labeled data and inability to model the relation between what experts see and what computers learn. Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis. While deep learning techniques are broad so that unseen information might help learn patterns of interest, human insights to describe objects of interest help in decision-making. This paper proposes a novel approach, DeepCraftFuse, to address the challenge of combining information provided by deep networks with visual-based features to significantly enhance the correct identification of cancerous tissues in patients affected with Barrett’s esophagus (BE). We demonstrate that DeepCraftFuse outperforms state-of-the-art techniques on private and public datasets, reaching results of around 95% when distinguishing patients affected by BE that is either positive or negative to esophageal cancer. KW - Deep Learning KW - Speiseröhrenkrebs KW - Adenocarcinom KW - Endobrachyösophagus KW - Diagnose KW - Maschinelles Lernen KW - Machine learning KW - Adenocarcinoma KW - Object detector KW - Barrett’s esophagus KW - Deep Learning Y1 - 2024 U6 - https://doi.org/10.1007/s00521-024-09615-z VL - 36 SP - 10445 EP - 10459 PB - Springer CY - London ER -