TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Scheppach, Markus W. A1 - Probst, Andreas A1 - Shahidi, Neal A1 - Prinz, Friederike A1 - Fleischmann, Carola A1 - Römmele, Christoph A1 - Gölder, Stefan Karl A1 - Braun, Georg A1 - Rauber, David A1 - Rückert, Tobias A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Byrne, Michael F. A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm JF - Gut N2 - In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63% and 76%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training. KW - Artificial Intelligence KW - Endoscopy KW - Medical Image Computing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-54293 VL - 71 IS - 12 SP - 2388 EP - 2390 PB - BMJ CY - London ER - TY - JOUR A1 - Souza Jr., Luis Antonio de A1 - Palm, Christoph A1 - Mendel, Robert A1 - Hook, Christian A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Weber, Silke A. T. A1 - Papa, João Paulo T1 - A survey on Barrett's esophagus analysis using machine learning JF - Computers in Biology and Medicine N2 - This work presents a systematic review concerning recent studies and technologies of machine learning for Barrett's esophagus (BE) diagnosis and treatment. The use of artificial intelligence is a brand new and promising way to evaluate such disease. We compile some works published at some well-established databases, such as Science Direct, IEEEXplore, PubMed, Plos One, Multidisciplinary Digital Publishing Institute (MDPI), Association for Computing Machinery (ACM), Springer, and Hindawi Publishing Corporation. Each selected work has been analyzed to present its objective, methodology, and results. The BE progression to dysplasia or adenocarcinoma shows a complex pattern to be detected during endoscopic surveillance. Therefore, it is valuable to assist its diagnosis and automatic identification using computer analysis. The evaluation of the BE dysplasia can be performed through manual or automated segmentation through machine learning techniques. Finally, in this survey, we reviewed recent studies focused on the automatic detection of the neoplastic region for classification purposes using machine learning methods. KW - Speiseröhrenkrankheit KW - Diagnose KW - Mustererkennung KW - Maschinelles Lernen KW - Literaturbericht KW - Barrett's esophagus KW - Machine learning KW - Adenocarcinoma KW - Image processing KW - Pattern recognition KW - Computer-aided diagnosis Y1 - 2018 U6 - https://doi.org/10.1016/j.compbiomed.2018.03.014 VL - 96 SP - 203 EP - 213 PB - Elsevier ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Palm, Christoph A1 - Probst, Andreas A1 - Mendel, Robert A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Siersema, Peter A1 - Messmann, Helmut T1 - A technical review of artificial intelligence as applied to gastrointestinal endoscopy: clarifying the terminology JF - Endoscopy International Open N2 - The growing number of publications on the application of artificial intelligence (AI) in medicine underlines the enormous importance and potential of this emerging field of research. In gastrointestinal endoscopy, AI has been applied to all segments of the gastrointestinal tract most importantly in the detection and characterization of colorectal polyps. However, AI research has been published also in the stomach and esophagus for both neoplastic and non-neoplastic disorders. The various technical as well as medical aspects of AI, however, remain confusing especially for non-expert physicians. This physician-engineer co-authored review explains the basic technical aspects of AI and provides a comprehensive overview of recent publications on AI in gastrointestinal endoscopy. Finally, a basic insight is offered into understanding publications on AI in gastrointestinal endoscopy. KW - Diagnose KW - Maschinelles Lernen KW - Gastroenterologie KW - Künstliche Intelligenz KW - Barrett's esophagus KW - Deep learning Y1 - 2019 U6 - https://doi.org/10.1055/a-1010-5705 VL - 07 IS - 12 SP - 1616 EP - 1623 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - JOUR A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Palm, Christoph A1 - Probst, Andreas A1 - Muzalyova, Anna A1 - Scheppach, Markus W. A1 - Nagl, Sandra A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Schulz, Dominik Andreas Helmut Otto A1 - Schlottmann, Jakob A1 - Prinz, Friederike A1 - Rauber, David A1 - Rückert, Tobias A1 - Matsumura, Tomoaki A1 - Fernández-Esparrach, Glòria A1 - Parsa, Nasim A1 - Byrne, Michael F. A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett’s esophagus: a tandem randomized and video trial JF - Endoscopy N2 - Background This study evaluated the effect of an artificial intelligence (AI)-based clinical decision support system on the performance and diagnostic confidence of endoscopists in their assessment of Barrett’s esophagus (BE). Methods 96 standardized endoscopy videos were assessed by 22 endoscopists with varying degrees of BE experience from 12 centers. Assessment was randomized into two video sets: group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett’s esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. Results AI had a stand-alone sensitivity, specificity, and accuracy of 92.2%, 68.9%, and 81.3%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3%, 58.1%, and 71.5%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.8% [95%CI 65.2%–74.2%] to 78.0% [95%CI 74.0%–82.0%]; specificity 67.3% [95%CI 62.5%–72.2%] to 72.7% [95%CI 68.2%–77.3%]). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. Conclusion BE nonexperts benefitted significantly from additional AI. BE experts and nonexperts remained significantly below the stand-alone performance of AI, suggesting that there may be other factors influencing endoscopists’ decisions to follow or discard AI advice. KW - Artificial Intelligence KW - Endoscopy KW - Medical Image Computing Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-72818 VL - 56 SP - 641 EP - 649 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Rauber, David A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Artificial Intelligence (AI) improves endoscopists’ vessel detection during endoscopic submucosal dissection (ESD) T2 - Endoscopy N2 - Aims While AI has been successfully implemented in detecting and characterizing colonic polyps, its role in therapeutic endoscopy remains to be elucidated. Especially third space endoscopy procedures like ESD and peroral endoscopic myotomy (POEM) pose a technical challenge and the risk of operator-dependent complications like intraprocedural bleeding and perforation. Therefore, we aimed at developing an AI-algorithm for intraprocedural real time vessel detection during ESD and POEM. Methods A training dataset consisting of 5470 annotated still images from 59 full-length videos (47 ESD, 12 POEM) and 179681 unlabeled images was used to train a DeepLabV3+neural network with the ECMT semi-supervised learning method. Evaluation for vessel detection rate (VDR) and time (VDT) of 19 endoscopists with and without AI-support was performed using a testing dataset of 101 standardized video clips with 200 predefined blood vessels. Endoscopists were stratified into trainees and experts in third space endoscopy. Results The AI algorithm had a mean VDR of 93.5% and a median VDT of 0.32 seconds. AI support was associated with a statistically significant increase in VDR from 54.9% to 73.0% and from 59.0% to 74.1% for trainees and experts, respectively. VDT significantly decreased from 7.21 sec to 5.09 sec for trainees and from 6.10 sec to 5.38 sec for experts in the AI-support group. False positive (FP) readings occurred in 4.5% of frames. FP structures were detected significantly shorter than true positives (0.71 sec vs. 5.99 sec). Conclusions AI improved VDR and VDT of trainees and experts in third space endoscopy and may reduce performance variability during training. Further research is needed to evaluate the clinical impact of this new technology. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1782891 VL - 56 IS - S 02 SP - S93 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Roser, David A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Palm, Christoph A1 - Probst, Andreas A1 - Muzalyova, Anna A1 - Scheppach, Markus W. A1 - Nagl, Sandra A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Schulz, Dominik Andreas Helmut Otto A1 - Schlottmann, Jakob A1 - Prinz, Friederike A1 - Rauber, David A1 - Rückert, Tobias A1 - Matsumura, Tomoaki A1 - Fernandez-Esparrach, G. A1 - Parsa, Nasim A1 - Byrne, Michael F. A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Human-Computer Interaction: Impact of Artificial Intelligence on the diagnostic confidence of endoscopists assessing videos of Barrett’s esophagus T2 - Endoscopy N2 - Aims Human-computer interactions (HCI) may have a relevant impact on the performance of Artificial Intelligence (AI). Studies show that although endoscopists assessing Barrett’s esophagus (BE) with AI improve their performance significantly, they do not achieve the level of the stand-alone performance of AI. One aspect of HCI is the impact of AI on the degree of certainty and confidence displayed by the endoscopist. Indirectly, diagnostic confidence when using AI may be linked to trust and acceptance of AI. In a BE video study, we aimed to understand the impact of AI on the diagnostic confidence of endoscopists and the possible correlation with diagnostic performance. Methods 22 endoscopists from 12 centers with varying levels of BE experience reviewed ninety-six standardized endoscopy videos. Endoscopists were categorized into experts and non-experts and randomly assigned to assess the videos with and without AI. Participants were randomized in two arms: Arm A assessed videos first without AI and then with AI, while Arm B assessed videos in the opposite order. Evaluators were tasked with identifying BE-related neoplasia and rating their confidence with and without AI on a scale from 0 to 9. Results The utilization of AI in Arm A (without AI first, with AI second) significantly elevated confidence levels for experts and non-experts (7.1 to 8.0 and 6.1 to 6.6, respectively). Only non-experts benefitted from AI with a significant increase in accuracy (68.6% to 75.5%). Interestingly, while the confidence levels of experts without AI were higher than those of non-experts with AI, there was no significant difference in accuracy between these two groups (71.3% vs. 75.5%). In Arm B (with AI first, without AI second), experts and non-experts experienced a significant reduction in confidence (7.6 to 7.1 and 6.4 to 6.2, respectively), while maintaining consistent accuracy levels (71.8% to 71.8% and 67.5% to 67.1%, respectively). Conclusions AI significantly enhanced confidence levels for both expert and non-expert endoscopists. Endoscopists felt significantly more uncertain in their assessments without AI. Furthermore, experts with or without AI consistently displayed higher confidence levels than non-experts with AI, irrespective of comparable outcomes. These findings underscore the possible role of AI in improving diagnostic confidence during endoscopic assessment. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1782859 SN - 1438-8812 VL - 56 IS - S 02 SP - 79 PB - Georg Thieme Verlag ER - TY - JOUR A1 - Souza Jr., Luis Antonio de A1 - Mendel, Robert A1 - Strasser, Sophia A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Papa, João Paulo A1 - Palm, Christoph T1 - Convolutional Neural Networks for the evaluation of cancer in Barrett’s esophagus: Explainable AI to lighten up the black-box JF - Computers in Biology and Medicine N2 - Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their level of accountability and transparency must be provided in such evaluations. The reliability related to machine learning predictions must be explained and interpreted, especially if diagnosis support is addressed. For this task, the black-box nature of deep learning techniques must be lightened up to transfer its promising results into clinical practice. Hence, we aim to investigate the use of explainable artificial intelligence techniques to quantitatively highlight discriminative regions during the classification of earlycancerous tissues in Barrett’s esophagus-diagnosed patients. Four Convolutional Neural Network models (AlexNet, SqueezeNet, ResNet50, and VGG16) were analyzed using five different interpretation techniques (saliency, guided backpropagation, integrated gradients, input × gradients, and DeepLIFT) to compare their agreement with experts’ previous annotations of cancerous tissue. We could show that saliency attributes match best with the manual experts’ delineations. Moreover, there is moderate to high correlation between the sensitivity of a model and the human-and-computer agreement. The results also lightened that the higher the model’s sensitivity, the stronger the correlation of human and computational segmentation agreement. We observed a relevant relation between computational learning and experts’ insights, demonstrating how human knowledge may influence the correct computational learning. KW - Deep Learning KW - Künstliche Intelligenz KW - Computerunterstützte Medizin KW - Barrett's esophagus KW - Adenocarcinoma KW - Machine learning KW - Explainable artificial intelligence KW - Computer-aided diagnosis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-20126 SN - 0010-4825 VL - 135 SP - 1 EP - 14 PB - Elsevier ER - TY - GEN A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Artificial Intelligence in Early Barrett's Cancer: The Segmentation Task T2 - Endoscopy N2 - Aims: The delineation of outer margins of early Barrett's cancer can be challenging even for experienced endoscopists. Artificial intelligence (AI) could assist endoscopists faced with this task. As of date, there is very limited experience in this domain. In this study, we demonstrate the measure of overlap (Dice coefficient = D) between highly experienced Barrett endoscopists and an AI system in the delineation of cancer margins (segmentation task). Methods: An AI system with a deep convolutional neural network (CNN) was trained and tested on high-definition endoscopic images of early Barrett's cancer (n = 33) and normal Barrett's mucosa (n = 41). The reference standard for the segmentation task were the manual delineations of tumor margins by three highly experienced Barrett endoscopists. Training of the AI system included patch generation, patch augmentation and adjustment of the CNN weights. Then, the segmentation results from patch classification and thresholding of the class probabilities. Segmentation results were evaluated using the Dice coefficient (D). Results: The Dice coefficient (D) which can range between 0 (no overlap) and 1 (complete overlap) was computed only for images correctly classified by the AI-system as cancerous. At a threshold of t = 0.5, a mean value of D = 0.72 was computed. Conclusions: AI with CNN performed reasonably well in the segmentation of the tumor region in Barrett's cancer, at least when compared with expert Barrett's endoscopists. AI holds a lot of promise as a tool for better visualization of tumor margins but may need further improvement and enhancement especially in real-time settings. KW - Speiseröhrenkrankheit KW - Maschinelles Lernen KW - Barrett's esphagus KW - Deep Learning KW - Segmentation Y1 - 2019 U6 - https://doi.org/10.1055/s-0039-1681187 VL - 51 IS - 04 SP - 6 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - CHAP A1 - Souza Jr., Luis Antonio de A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Papa, João Paulo A1 - Mendel, Robert A1 - Palm, Christoph T1 - Barrett's Esophagus Identification Using Color Co-occurrence Matrices T2 - 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Parana, 2018 N2 - In this work, we propose the use of single channel Color Co-occurrence Matrices for texture description of Barrett’sEsophagus (BE)and adenocarcinoma images. Further classification using supervised learning techniques, such as Optimum-Path Forest (OPF), Support Vector Machines with Radial Basisunction (SVM-RBF) and Bayesian classifier supports the contextof automatic BE and adenocarcinoma diagnosis. We validated three approaches of classification based on patches, patients and images in two datasets (MICCAI 2015 and Augsburg) using the color-and-texture descriptors and the machine learning techniques. Concerning MICCAI 2015 dataset, the best results were obtained using the blue channel for the descriptors and the supervised OPF for classification purposes in the patch-based approach, with sensitivity nearly to 73% for positive adenocarcinoma identification and specificity close to 77% for BE (non-cancerous) patch classification. Regarding the Augsburg dataset, the most accurate results were also obtained using both OPF classifier and blue channel descriptor for the feature extraction, with sensitivity close to 67% and specificity around to76%. Our work highlights new advances in the related research area and provides a promising technique that combines color and texture information, allied to three different approaches of dataset pre-processing aiming to configure robust scenarios for the classification step. KW - Barrett’s Esophagus KW - Co-occurrence Matrices KW - Machine learning KW - Texture Analysis Y1 - 2018 U6 - https://doi.org/10.1109/SIBGRAPI.2018.00028 SP - 166 EP - 173 ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus JF - Gut N2 - Based on previous work by our group with manual annotation of visible Barrett oesophagus (BE) cancer images, a real-time deep learning artificial intelligence (AI) system was developed. While an expert endoscopist conducts the endoscopic assessment of BE, our AI system captures random images from the real-time camera livestream and provides a global prediction (classification), as well as a dense prediction (segmentation) differentiating accurately between normal BE and early oesophageal adenocarcinoma (EAC). The AI system showed an accuracy of 89.9% on 14 cases with neoplastic BE. KW - Speiseröhrenkrankheit KW - Diagnose KW - Maschinelles Lernen KW - Barrett's esophagus KW - Deep learning KW - real-time Y1 - 2020 U6 - https://doi.org/10.1136/gutjnl-2019-319460 VL - 69 IS - 4 SP - 615 EP - 616 PB - BMJ CY - London ER -