TY - JOUR A1 - Braun, Peter A1 - Gebhard, Jürgen A1 - Matysik, Frank-Michael A1 - Rabl, Hans-Peter T1 - Potential Technical Approaches for Improving Low-Temperature NOx Conversion of Exhaust Aftertreatment Systems JF - Chemie Ingenieur Technik N2 - Lean-burn engines, such as diesel engines, are widely used in mobile and stationary applications. Operation of lean-burn engines leads to formation of distinct amounts of nitrogen oxides (NO and NO2). Efficient aftertreatment is mandatory to meet legal requirements, especially at low exhaust temperatures, as for the future a decline of the exhaust temperature level can be predicted due to improved engine efficiencies. Within this review, potential technical solutions to enhance the DeNO(x)-aftertreatment efficiency at low exhaust temperatures are presented. KW - DECOMPOSITION KW - Diesel Engine KW - Exhaust aftertreatment KW - IMPACT KW - Low-temperature DeNO(x) KW - NH3 KW - NITRIC-OXIDE KW - Nitrogen oxides KW - OXIDE CATALYST KW - PERFORMANCE KW - PYROLYSIS KW - SCR KW - Selective catalytic reduction KW - SELECTIVE CATALYTIC-REDUCTION KW - UREA HYDROLYSIS Y1 - 2018 U6 - https://doi.org/10.1002/cite.201700122 VL - 90 IS - 6 SP - 762 EP - 773 PB - WILEY-VCH ER - TY - JOUR A1 - Braun, Peter A1 - Rabl, Hans-Peter A1 - Matysik, Frank-Michael T1 - Investigations on the Liquid-Phase Decomposition of AdBlue Urea for the Selective Catalytic Reduction Process JF - Chemie Ingenieur Technik N2 - Difficulties in decomposing AdBlue to ammonia limit the applicability of selective catalytic reduction systems at low exhaust temperatures. Investigations on the decomposition of AdBlue in the liquid phase under elevated pressure at temperatures up to 165 degrees C were carried out. Besides effects of inorganic catalysts, the impact of pH on urea decomposition was examined. After dissolution in aqueous phase, the compounds ZnO, WO3, and MoO3 were found to be effective in liquid-phase AdBlue decomposition. However, the efficiency was dropping significantly over few hours. Decomposition of AdBlue urea was also found to be favored for alkaline and acidic conditions. KW - AdBlue urea KW - Ammonia KW - DeNO(x) KW - EMISSIONS KW - HYDROLYSIS KW - KINETICS KW - Liquid-phase decomposition KW - LOW-TEMPERATURE SCR KW - MODEL KW - NOX KW - Selective catalytic reduction Y1 - 2019 U6 - https://doi.org/10.1002/cite.201800055 VL - 91 IS - 7 SP - 961 EP - 968 PB - Wiley ER - TY - JOUR A1 - Braun, Peter A1 - Durner, Bernhard A1 - Rabl, Hans-Peter A1 - Matysik, Frank-Michael T1 - Investigations on the decomposition of AdBlue urea in the liquid phase at low temperatures by an electrochemically induced pH shift JF - Monatshefte für Chemie N2 - Ammonia-based selective catalytic reduction (SCR) systems are the most widely used technology for reduction of nitrogen oxide emissions from lean-burn engines such as diesel engines. However, at low exhaust temperatures, the SCR process is limited by difficulties in the decomposition of the ammonia precursor urea, which is carried on-board using an aqueous solution "AdBlue". In this study, the decomposition of AdBlue urea induced by electrical current and the resulting associated pH shifts were investigated in a divided cell configuration in the liquid phase. The decomposition was found to be favored in both electrochemical compartments, anodic and cathodic, at temperatures of 60-80 degrees C compared to a reference without electrochemical treatment. In addition to the determination of ammonia contents using an ammonia sensor, IC/HPLC analyses were carried out for each sample. Different side products such as biuret, nitrate, cyanuric acid, ammelide, and others were formed. In the anodic compartment, nitrate formation could be observed due to oxidation of ammonia at the electrode surface. [GRAPHICS] . KW - Ammonia KW - Catalysis KW - CONVERSION KW - Diesel Engine KW - DOPED MN/TIO2 KW - Electrochemistry KW - HYDROLYSIS KW - In situ pH shift KW - NOX KW - OXIDATION KW - PRODUCTS KW - REMOVAL KW - SCR KW - SELECTIVE CATALYTIC-REDUCTION KW - Thermochemistry Y1 - 2019 U6 - https://doi.org/10.1007/s00706-019-02406-6 VL - 150 IS - 9 SP - 1633 EP - 1641 PB - Springer ER - TY - GEN A1 - van der Weerd, Bastiaan A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - A Conductivity Probe for Determination of the Carbon Dioxide Tension at the Oxygenator Exhaust Outlet during Extracorporeal Membrane Oxygenation (ECMO) T2 - Proceedings of the 9th ISC Modern Analytical Chemistry 2013, Prag Y1 - 2013 UR - https://www.gdch.de/fileadmin/downloads/Veranstaltungen/Tagungen/2014_Tagungen/analytica/poster_abstracts/sens03_vanderweerd_5860.pdf ER - TY - CHAP A1 - van der Weerd, Bastiaan A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - A Conductivity Probe for the Determination of Carbon Dioxide Tension at the Oxygenator Exhaust Outlet during Extracorporeal Membrane Oxygenation (ECMO) T2 - analytica Conference 2014, 1. bis 4. April, München Y1 - 2014 ER - TY - CHAP A1 - van der Weerd, Bastiaan A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - A Conductivity Probe for the Determination of Carbon Dioxide Tension at the Oxygenator Exhaust Outlet during Extracorporeal Membrane Oxygenation (ECMO) T2 - Electrochemistry 2014, September 22 - 24, Mainz Y1 - 2014 ER - TY - CHAP A1 - van der Weerd, Bastiaan A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - A Planar Conductivity Probe for CO2 Determination at the Oxygenator Outlet T2 - Doktorandenseminar GDCh Prozessanalytik 2014, Berlin Y1 - 2014 ER - TY - JOUR A1 - van der Weerd, Bastiaan A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - Trends in Electrochemical Sensing of Blood Gases JF - Bioanalytical Reviews N2 - The monitoring of partial pressures of the blood gases carbon dioxide (pCO2) and oxygen (pO2) is of great importance in clinical diagnostics. The measure of pCO2 and pO2 provides essential information about the patient’s metabolism, gas exchange, ventilation, and acid–base homeostasis. The conventional electrochemical methods for clinical blood gas analysis are based on the potentiometric Severinghaus sensor for carbon dioxide and the amperometric Clark sensor for oxygen. These techniques are well established and are only shortly discussed in this overview. However, in recent years a variety of modifications of these classical sensor concepts and new approaches of electrochemical sensing of pCO2 and pO2 have been introduced. This review summarizes recent developments in this field and discusses the potential for future applications in clinical blood gas analysis. KW - Blood gas analysis KW - Noninvasive blood gas sensor KW - Electrochemical sensor KW - Clinical analysis Y1 - 2016 U6 - https://doi.org/10.1007/11663_2016_1 VL - 6 SP - 263 EP - 280 PB - Springer CY - Berlin ER - TY - GEN A1 - Weigl, Stefan A1 - Matysik, Frank-Michael A1 - Bierl, Rudolf T1 - Development of a sensor system for analysis of human breath exhale T2 - BayWISS Herbstakademie 2018, Plankstetten N2 - Atemgasanalyse ist ein junges und vielversprechendes Feld im Bereich der diagnostischen Medizin. Der Ansatz verspricht einfach zugängliche und leicht wiederholbare Probennahme die zum einen non-invasiv ist und zugleich Rückschlüsse auf Vorgänge im menschlichen Körper und bspw. dessen Gesundheitszustand zulässt. Seit Ende des 20. Jahrhunderts gibt es Massenspektrometer die es ermöglicht haben mehrere Tausend verschiedene Stoffe in der Ausatemluft nachzuweisen. Diese Technologien verbessern sich stetig und ermöglichen es die Vorgänge und Zusammenhänge zwischen Zusammensetzung der Ausatemluft und systemischen Prozessen besser zu verstehen. Die bei Studien mit Massenspektrometern ermittelten Biomarker, deren qualitative und quantitative Detektion Gesundheitsdiagnosen ermöglichen, haben aber noch nicht den Weg in den klinischen Alltag gefunden. Das Problem sind meistens die hohen Anschaffungskosten, komplizierte Datenauswertung und zumeist geringe Verfügbarkeit und Immobilität dieser Messgeräte. Die photoakustische Spektroskopie ist eine selektive und hochsensitive Messmethode, die es ermöglichen soll den Biomarker „Aceton“, der grundsätzlich die Metabolisierung von Fetten widerspiegelt, schnell und reproduzierbar quantitativ zu detektieren. Dabei müssen Hindernisse wie Querempfindlichkeiten, ausgelöst durch die komplexe Zusammensetzung der Messmatrix Atemgas, bei gleichzeitig kleine Aceton Konzentrationen (200-800 parts-per-billion) überwunden werden. Verschiedene Wellenlängenbereiche mit unterschiedlichen Lichtquellen, akustisch resonante sowie innovative Messzellendesigns und anspruchsvolle Datenauswertung mittels komplexer Algorithmik sind nötig um das Ziel, die Entwicklung eines kompakten, günstigen und zuverlässigen Acetonsensors, zu erreichen. Y1 - 2018 ER - TY - JOUR A1 - Rück, Thomas A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - Development and characterization of a laboratory setup for photoacoustic NO2 determination based on the excitation of electronic 2B2 and 2B1 states using a low-cost semiconductor laser JF - Sensors and Actuators A: Physical N2 - This work gives a detailed characterization of a laboratory setup for photoacoustic NO2 trace gas detection at the ppb level. The signal generation is based on the excitation of electronic 2B2 and 2B1 states using a low-cost semiconductor laser emitting at 450 nm. An acoustic resonator was used for signal amplification and the modulation frequency of the laser was determined to 3395 Hz in order to gain maximum signal amplification. The quality of resonant amplification was determined to 7.9. The gas samples were NO2 calibration gases diluted with pure nitrogen. The signal-to-noise ratio (SNR) dependency on the flow rate Q and the lock-in time constant τLIA was investigated, respectively, and the optimum values were specified to Q = 500 mL/min and τLIA = 2 s. In case of ambient noise, increasing τLIA to 10 s was evaluated as sufficient for SNR preservation. The noise level was measured in the absence of NO2 and it was determined to be composed of 51% electronic noise and 49% gas flow noise. With the analyte concentration ranging from 300 ppbV to 100 ppmV, the linear dependency of the photoacoustic amplitude on the NO2 concentration was specified, the sensitivity was determined to 110 μV/ppmV and the maximum measurement error was calculated to ±0.8%. The detection limit was determined to 2.0 ppbV. Furthermore, the stability of the signal was investigated and a maximum drift of ±1% was observed within a measuring period of 30 min. The response time τ90 was specified to 58 s. All results considered, this photoacoustic measuring system, which is based on low-cost signal generation and detection units, provides an excellent basis in view of developing a portable device for photoacoustic trace gas detection. Y1 - 2017 U6 - https://doi.org/10.1016/j.sna.2017.03.024 VL - 258 SP - 193 EP - 200 PB - Elsevier CY - Amsterdam, Niederlande ER - TY - GEN A1 - Rück, Thomas A1 - Matysik, Frank-Michael A1 - Bierl, Rudolf T1 - Comparison of acoustic detectors for use in miniaturized photoacoustic devices designed for nitrogen dioxide trace gas measurement T2 - ANAKON, 23.-26.3.2015, Graz Y1 - 2015 ER - TY - JOUR A1 - Rück, Thomas A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - NO2 trace gas monitoring in air using off-beam quartz enhanced photoacoustic spectroscopy (QEPAS) and interference studies towards CO2, H2O and acoustic noise JF - Sensors and Actuators B: Chemical N2 - We present the development and characterization as well as comprehensive interference studies of a photoacoustic NO2 trace gas detection system. The system is based on an off-beam quartz enhanced photoacoustic scheme (off-beam QEPAS) and signal generation was initiated by amplitude modulating a low-cost diode laser emitting at 450 nm. The QEPAS sensor element features double-resonant amplification, still it is only ∼ 5 × 5 × 2.5 mm in size. The individual and combined resonance characteristics were investigated and specified to 52 dB amplification, adding up 15 dB acoustic- and 37 dB mechanical-resonance amplification. The linearity of the photoacoustic signal dependency on the analyte concentration was verified from 200 ppbV to 100 ppmV NO2 in synthetic air. The detection limit (3σ) was determined to 1.8 ppbV using a lock-in time constant of 10 s and an averaging time of 20 s. The normalized noise equivalent absorption coefficient was specified to 2.5·10−8 W cm−1 Hz−0.5. The stability of the signal was investigated over time and a slight drift by 1‰ was observed after 30 min without temperature stabilizing the photoacoustic cell (PAC). Noise analysis was performed by means of Allan deviation and the inverse dependency of response time and precision of the system on the lock-in time constant was outlined. We performed interference analyses towards N2, O2, CO2, H2O and acoustic noise, respectively. Although neither spectral interferences nor losses due to slow NO2 VT-relaxation were observed, O2 was identified to cause a 15% signal drop due to VVNO2-O2-relaxation. Changing H2O concentrations were found to cause acoustic detuning, which cannot be compensated by adjusting the frequency of modulation, because of the double-resonant feature of the PAC. However, alternative approaches of compensation were discussed. Finally, we carried out heavy traffic noise simulations and determined the QEPAS setup to be 46 times less susceptible towards ambient noise compared to standard microphone-based photoacoustic setups. Y1 - 2018 U6 - https://doi.org/10.1016/j.snb.2017.09.039 VL - 255 IS - Part 3, February SP - 2462 EP - 2471 PB - Elsevier ER - TY - CHAP A1 - Rück, Thomas A1 - Landgraf, Ferdinand A1 - Läpple, I. A1 - Unger, J. A1 - Matysik, Frank-Michael A1 - Bierl, Rudolf T1 - Specification of an improved photoacoustic setup for high-sensitive, low-cost NO2 trace gas detection T2 - 18th International Conference on Photoacoustic and Photothermal Phenomena (ICPPP18), 2015, September 6-10, Novi Sad, Serbia Y1 - 2015 ER - TY - GEN A1 - Rück, Thomas A1 - Matysik, Frank-Michael A1 - Bierl, Rudolf T1 - Development of a miniaturized photoacoustic multigas sensing system for trace gas measurement T2 - analytica conference 2014, 1. bis 4. April, München Y1 - 2014 UR - https://www.gdch.de/fileadmin/downloads/Veranstaltungen/Tagungen/2014_Tagungen/analytica/poster_abstracts/sens05_rueck_5925.pdf ER - TY - JOUR A1 - Rück, Thomas A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - Low-cost photoacoustic NO2 trace gas monitoring at the pptV-level JF - Sensors and Actuators A: Physical N2 - We present the development and the characterization of a photoacoustic NO2 trace gas detection system. The system is based on the implementation of low-cost components, i.e. a mass-produced blue diode laser and a standard MEMS microphone which is commonly built into smartphones, for example. An optimized cell design was realized by means of 3D printing. The linearity of the photoacoustic signal dependency on the analyte concentration was verified from 200 ppbV to 100 ppmV NO2. The detection limit (1σ) was determined to 33 pptV and the normalized noise equivalent absorption coefficient was calculated to 7.0 ∙ 10−10 W cm−1 Hz−1/2. The dynamic range of the system was verified to be linear over three magnitudes of order and the sensitivity was calculated to 814 μV/ppmV. The system was characterized in view of optimal operating parameters, i.e. lock-in time constant τLIA and total mass flow rate, optical performance and signal stability. The mass flow dependend response time of the system was specified to 19 s and an idealized step response to a quasi-Heaviside step function was quantified as a function of τLIA. The quality factor of acoustic resonance was determined to 21.9 and an empirical expression regarding acoustic node shifting is provided. The expression takes into account the radius of the resonator pipe and the radius of the hole, which was drilled into the pipe for microphone coupling. Furthermore, we studied the cross-sensitivity of the photoacoustic signal towards H2O and CO2, respectively. Y1 - 2017 U6 - https://doi.org/10.1016/j.sna.2017.06.036 VL - 263 SP - 501 EP - 509 PB - Elsevier CY - Amsterdam, Niederlande ER - TY - INPR A1 - Müller, Max A1 - Weigl, Stefan A1 - Müller-Williams, Jennifer A1 - Lindauer, Matthias A1 - Rück, Thomas A1 - Jobst, Simon A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - Ambient methane monitoring at Hohenpeißenberg utilizing photoacoustic spectroscopy and cavity ring down spectroscopy N2 - With an atmospheric concentration of approximately 2000 parts per billion (ppbV, 10−9) methane (CH4) is the second most abundant greenhouse gas (GHG) in the atmosphere after carbon dioxide (CO2). The task of long-term and spatially resolved GHG monitoring to verify whether climate policy actions are effective, is becoming more crucial as climate change progresses. In this paper we report the CH4 concentration readings of our photoacoustic (PA) sensor over a five day period at Hohenpeißenberg, Germany. As a reference device a calibrated cavity ringdown spectrometer Picarro G2301 from the meteorological observatory was employed. Trace gas measurements with photoacoustic instruments promise to provide low detection limits at comparably low costs. However, PA devices are often susceptible to cross-sensitivities related to environmental influences. The obtained results show that relaxation effects due to fluctuating environmental conditions, e.g. ambient humidity, are a non-negligible factor in PA sensor systems. Applying algorithm compensation techniques, which are capable of calculating the influence of relaxational effects on the photoacoustic signal, increase the accuracy of the photoacoustic sensor significantly. With an average relative deviation of 1.11 % from the G2301, the photoacoustic sensor shows good agreement with the reference instrument. Y1 - 2023 U6 - https://doi.org/10.5194/egusphere-2023-1010 ER - TY - CHAP A1 - Pangerl, Jonas A1 - Wittmann, Elisabeth A1 - Weigl, Stefan A1 - Müller, Max A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - Using a Modulated Quantum Cascade Laser for Photoacoustic Spectra Recording of Exhaled Acetone and Main Breath Components T2 - Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES) N2 - Photoacoustic spectra of main breath components together with acetone are presented demonstrating spectral linearity towards different concentrations and compositions. The acetone 3σ detection limit at 1209 cm−1 is 0.28 ppbV Y1 - 2023 U6 - https://doi.org/10.1364/AIS.2022.ATu3G.1 PB - Optica Publishing Group ER - TY - JOUR A1 - Weigl, Stefan A1 - Feldmeier, Florian A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - Photoacoustic detection of acetone in N2 and synthetic air using a high power UV LED JF - Sensors Actuators B Chemical N2 - The performance of a photoacoustic trace gas sensor for the detection of acetone in N2 and synthetic air is reported. The sensor system utilises an amplitude modulated UV LED. The light source has an emission maximum at 278 nm and a maximum CW output power of 300 mW according to the datasheet. Three different collimating and focusing approaches have been investigated to guide the highly divergent LED light into the acoustic resonator of the photoacoustic measurement cell. A 3D printed aluminium cell was designed to optimize light coupling by simultaneously minimizing the photoacoustic background signal generation. Hence, the diameter of the resonator was set to a comparable large diameter of 10 mm and the inner walls of the resonator were mirror polished. The additive manufacturing procedure allowed for integration of a spirally formed gas channel, enabling gas heating prior to detection. The sensor performance was investigated by measuring acetone in N2 and synthetic air at different concentrations. The UV LED current was set to 86 % of the maximum value according to the datasheet of the light source in order to increase the lifetime and thermal stability. An Allan-Werle deviation analysis validates a stable sensor performance. The limit of detection (LoD) was determined at a 3σ noise level with a 10 s lock-in amplifier time constant by sampling data points over 20 s with a data acquisition rate of 5 Hz. LoDs of 80.8 ppbV and 19.6 ppbV were obtained for acetone in N2 and synthetic air, respectively. KW - Acetone detection KW - Photoacoustic spectroscopy KW - High power UV LED KW - UV LED collimation system KW - Acetone breath analysis Y1 - 2020 U6 - https://doi.org/10.1016/j.snb.2020.128109 N1 - Corresponding author at: Sensorik-Applikationszentrum (SappZ) der Ostbayerischen Technischen Hochschule Regensburg VL - 316 IS - August SP - 1 EP - 11 PB - Elsevier ER - TY - JOUR A1 - Weigl, Stefan A1 - Wittmann, Elisabeth A1 - Rück, Thomas A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - Effects of ambient parameters and cross-sensitivities from O2, CO2 and H2O on the photoacoustic detection of acetone in the UV region JF - Sensors Actuators B Chemical N2 - We present a sensitive UV LED photoacoustic setup for the detection of gaseous acetone and discuss its applicability towards breath analysis. We investigated the performance of the sensor for low acetone concentrations down to 0.1 parts per million (ppmV). The influences of temperature, flow, pressure, optical power and LED duty cycle on the measured signal have been examined. To gain a better understanding of the different effects on the photoacoustic signal, correlation analysis was applied and feature importance was determined using a large measured dataset. Furthermore, the cross-sensitivities towards O2, CO2 and H2O have been studied extensively. Finally, the sensor’s performance to detect acetone between 0.1–1 ppmV within gas mixtures simulating breath exhale conditions has been investigated, too. With a limit of detection (LoD) of 12.5 parts per billion (ppbV) (3σ) measured under typical breath exhale gas mixture conditions, the sensor demonstrated a high potential for the application of acetone detection in human breath analysis. KW - Acetone detection KW - Photoacoustic spectroscopy KW - High power UV LED KW - Cross-sensitivities KW - Acetone breath analysis Y1 - 2021 U6 - https://doi.org/10.1016/j.snb.2020.129001 SN - 0925-4005 N1 - Corresponding authors: Stefan Weigl, Elisabeth Wittmann, Thomas Rück, Rudolf Bierl, Frank-Michael Matysik N1 - Corrigendum to “Effects of ambient parameters and cross-sensitivities from O2, CO2 and H2O on the photoacoustic detection of acetone in the UV region” [Sens. Actuators B: Chem. 328 (February 2021) (2020) 129001]; https://doi.org/10.1016/j.snb.2020.129392 IS - 328 PB - Elsevier ER - TY - JOUR A1 - Müller, Max A1 - Rück, Thomas A1 - Jobst, Simon A1 - Pangerl, Jonas A1 - Weigl, Stefan A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - An Algorithmic Approach to Compute the Effect of Non-Radiative Relaxation Processes in Photoacoustic Spectroscopy JF - Photoacoustics N2 - Successful transfer of photoacoustic gas sensors from laboratory to real-life applications requires knowledge about potential cross-sensitivities towards environmental and gas matrix changes. Multi-dimensional calibration in case of cross-sensitivities can become very complex or even unfeasible. To address this challenge, we present a novel algorithm to compute the collision based non-radiative efficiency and phase lag of energy relaxation on a molecular level (CoNRad) for photoacoustic signal calculation. This algorithmic approach allows to calculate the entire elaxation cascade of arbitrarily complex systems, yielding a theoretical photoacoustic signal. In this work the influence of varying bulk compositions, i.e. nitrogen (N2), oxygen (O2) and water (H2O) on the photoacoustic signal during methane (CH4) detection is demonstrated. The applicability of the algorithm to other photoacoustic setups is shown exemplary by applying it to the relaxational system investigated in [1]. Hayden et al. examined the effect of water on photoacoustic carbon monoxide (CO) detection. Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-39935 N1 - Corresponding author: Max Müller VL - 26 PB - Elsevier ER - TY - INPR A1 - Rück, Thomas A1 - Müller, Max A1 - Jobst, Simon A1 - Weigl, Stefan A1 - Pangerl, Jonas A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - Digital Twin of a Photoacoustic Trace Gas Sensor for Monitoring Methane in Complex Gas Compositions N2 - The digitalization of industrial processes requires smart sensor systems. Photoacoustic spectroscopy is well suited for this purpose as it allows for small-sized and low-cost trace gas analysis. However, the method is susceptible to changes in measurement conditions and standard calibration routines often fail to correct for all changes. We therefore created a Digital Twin (DT) of a photoacoustic trace gas sensor for methane and evaluated it regarding variations in gas composition (CH4, N2, O2, CO2, H2O), temperature and pressure. With a mean absolute percentage error of 0.8 % the accuracy of the sensor after DT compensation significantly exceeds the 24 % achieved based on standard calibration in nitrogen. For the first time, we can fully analytically compute the photoacoustic signal under moderate ambient conditions with an error in the ppbV range by taking a holistic approach. Assuming knowledge of the underlying energy transfer processes, the model of this Digital Twin can be adapted to any microphone based photoacoustic sensor for monitoring any analyte species. Y1 - 2022 U6 - https://doi.org/10.2139/ssrn.4215170 PB - Elsevier / SSRN ER - TY - CHAP A1 - Müller, Max A1 - Rück, Thomas A1 - Jobst, Simon A1 - Pangerl, Jonas A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - Creating a Digital Twin of a Photoacoustic Gas Sensor for Methane Detection in Complex Gas Matrices T2 - Proceedings Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES): 11–15 July 2022, Vancouver, British Columbia, Canada N2 - We present the calculation results from a digital twin (DT) of our photoacoustic (PA) sensor for methane detection, regarding gas composition, temperature and pressure variations. Y1 - 2022 SN - 978-1-957171-10-4 U6 - https://doi.org/10.1364/LACSEA.2022.LW4D.2 PB - Optica Publishing Group ER - TY - JOUR A1 - Müller, Max A1 - Weigl, Stefan A1 - Müller-Williams, Jennifer A1 - Lindauer, Matthias A1 - Rück, Thomas A1 - Jobst, Simon A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - Comparison of photoacoustic spectroscopy and cavity ring-down spectroscopy for ambient methane monitoring at Hohenpeißenberg JF - Atmospheric Measurement Techniques N2 - With an atmospheric concentration of approximately 2000 parts per billion (ppbV, 10−9), methane (CH4) is the second most abundant greenhouse gas (GHG) in the atmosphere after carbon dioxide (CO2). The task of long-term and spatially resolved GHG monitoring to verify whether climate policy actions are effective is becoming more crucial as climate change progresses. In this paper we report the CH4 concentration readings of our photoacoustic (PA) sensor over a 5 d period at Hohenpeißenberg, Germany. As a reference device, a calibrated cavity ring-down spectrometer, Picarro G2301, from the meteorological observatory of the German Weather Service (DWD) was employed. Trace gas measurements with photoacoustic instruments promise to provide low detection limits at comparably low costs. However, PA devices are often susceptible to cross-sensitivities related to fluctuating environmental conditions, e.g. ambient humidity. The obtained results show that for PA sensor systems non-radiative relaxation effects induced by varying humidity are a non-negligible factor. Applying algorithm compensation techniques, which are capable of calculating the influence of non-radiative relaxation effects on the photoacoustic signal, increase the accuracy of the photoacoustic sensor significantly. With an average relative deviation of 1.11 % from the G2301, the photoacoustic sensor shows good agreement with the reference instrument. Y1 - 2023 U6 - https://doi.org/10.5194/amt-16-4263-2023 SN - 1867-8548 VL - 16 IS - 18 SP - 4263 EP - 4270 PB - Copernicus Publications ER - TY - INPR A1 - Pangerl, Jonas A1 - Moser, Elisabeth A1 - Müller, Max A1 - Weigl, Stefan A1 - Jobst, Simon A1 - Rück, Thomas A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - A Highly Sensitive Acetone and Ethanol Quantum Cascade Laser Based Photoacoustic Sensor: Characterization and Multi-Component Spectra Recording in Synthetic Breath T2 - SSRN Electronic Journal N2 - Trace gas analysis in breath is challenging due to the vast number of different components. We present a highly sensitive quantum cascade laser based photoacoustic setup for breath analysis. Scanning the range between 8260 and 8270 nm with a spectral resolution of 48 pm, we are able to quantify acetone and ethanol within a typical breath matrix containing water and CO2. We photoacoustically acquired spectra within this region of mid-infra-red light and prove that those spectra do not suffer from non-spectral interferences. The purely additive behavior of a breath sample spectrum was verified by comparing it with the independently acquired single component spectra using Pearson and Spearman correlation coefficients. A previously presented simulation approach is improved and an error attribution study is presented. With a 3σ detection limit of 6.5 ppbV in terms of ethanol and 250 pptV regarding acetone, our system is among the best performing presented so far. KW - Photoacoustic spectroscopy KW - quantum cascade laser KW - spectral simulation KW - breath analysis KW - acetone Y1 - 2022 U6 - https://doi.org/10.2139/ssrn.4305376 PB - Elsevier ER - TY - JOUR A1 - Pangerl, Jonas A1 - Moser, Elisabeth A1 - Müller, Max A1 - Weigl, Stefan A1 - Jobst, Simon A1 - Rück, Thomas A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - A sub-ppbv-level Acetone and Ethanol Quantum Cascade Laser Based Photoacoustic Sensor– Characterization and Multi-Component Spectra Recording in Synthetic Breath JF - Photoacoustics N2 - Trace gas analysis in breath is challenging due to the vast number of different components. We present a highly sensitive quantum cascade laser based photoacoustic setup for breath analysis. Scanning the range between 8263 and 8270 nm with a spectral resolution of 48 pm, we are able to quantify acetone and ethanol within a typical breath matrix containing water and CO2. We photoacoustically acquired spectra within this region of mid-infra-red light and prove that those spectra do not suffer from non-spectral interferences. The purely additive behavior of a breath sample spectrum was verified by comparing it with the independently acquired single component spectra using Pearson and Spearman correlation coefficients. A previously presented simulation approach is improved and an error attribution study is presented. With a 3σ detection limit of 6.5 ppbv in terms of ethanol and 250 pptv regarding acetone, our system is among the best performing presented so far. KW - Acetone KW - Breath analysis KW - Photoacoustic spectroscopy KW - Quantum cascade laser KW - Spectral simulation Y1 - 2023 U6 - https://doi.org/10.1016/j.pacs.2023.100473 SN - 2213-5979 N1 - Corresponding author: Jonas Pangerl VL - 30 SP - 1 EP - 12 PB - Elsevier ER - TY - JOUR A1 - Rück, Thomas A1 - Müller, Max A1 - Jobst, Simon A1 - Weigl, Stefan A1 - Pangerl, Jonas A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - Digital Twin of a Photoacoustic Trace Gas Sensor for Monitoring Methane in Complex Gas Compositions JF - Sensors and Actuators B: Chemical N2 - The digitalization of industrial processes requires smart sensor systems. Photoacoustic spectroscopy is well suited for this purpose as it allows for small-sized and low-cost trace gas analysis. However, the method is susceptible to changes in measurement conditions and standard calibration routines often fail to correct for all changes. We therefore created a Digital Twin (DT) of a photoacoustic trace gas sensor for methane and evaluated it regarding variations in gas composition (CH4, N2, O2, CO2, H2O), temperature and pressure. With a mean absolute percentage error of 0.8 % the accuracy of the sensor after DT compensation significantly exceeds the 24 % achieved based on standard calibration in nitrogen. For the first time, we can fully analytically compute the photoacoustic signal under moderate ambient conditions with an error in the ppbV range by taking a holistic approach. Assuming knowledge of the underlying energy transfer processes, the model of this Digital Twin can be adapted to any microphone based photoacoustic sensor for monitoring any analyte species. KW - Digital Twin KW - Photoacoustic spectroscopy KW - Smart sensor KW - Acoustic resonance monitoring KW - CoNRad KW - Calibration-free method Y1 - 2023 U6 - https://doi.org/10.1016/j.snb.2022.133119 N1 - Preprint unter: https://doi.org/10.2139/ssrn.4215170 ; https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/5417 IS - 378 ER - TY - JOUR A1 - Pangerl, Jonas A1 - Sukul, Pritam A1 - Rück, Thomas A1 - Fuchs, Patricia A1 - Weigl, Stefan A1 - Miekisch, Wolfram A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - An inexpensive UV-LED photoacoustic based real-time sensor-system detecting exhaled trace-acetone JF - Photoacoustics N2 - n this research we present a low-cost system for breath acetone analysis based on UV-LED photoacoustic spectroscopy. We considered the end-tidal phase of exhalation, which represents the systemic concentrations of volatile organic compounds (VOCs) – providing clinically relevant information about the human health. This is achieved via the development of a CO2-triggered breath sampling system, which collected alveolar breath over several minutes in sterile and inert containers. A real-time mass spectrometer is coupled to serve as a reference device for calibration measurements and subsequent breath analysis. The new sensor system provided a 3σ detection limit of 8.3 ppbV and an NNEA of 1.4E-9 Wcm 1Hz 0.5. In terms of the performed breath analysis measurements, 12 out of 13 fell within the error margin of the photoacoustic measurement system, demonstrating the reliability of the measurements in the field. KW - Photoacoustic spectroscopy KW - Real-time mass-spectrometry KW - Breath analysis KW - Acetone KW - UV-LED Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-71279 SN - 2213-5979 N1 - Corresponding author der OTH Regensburg: Jonas Pangerl VL - 38 PB - Elsevier ER - TY - INPR A1 - Pangerl, Jonas A1 - Sukul, Pritam A1 - Rück, Thomas A1 - Fuchs, Patricia A1 - Weigl, Stefan A1 - Miekisch, Wolfram A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - An Inexpensive Uv-Led Photoacoustic Based Real-Time Sensor-System Detecting Exhaled Trace-Acetone N2 - In this research we present a low-cost system for breath acetone analysis based on UV-LED photoacoustic spectroscopy. We considered the end-tidal phase of exhalation, which represents the systemic concentrations of volatile organic compounds (VOCs) – providing clinically relevant information about the human health. This is achieved via the development of a CO2-triggered breath sampling system, which collected alveolar breath over several minutes in sterile and inert containers. A real-time mass spectrometer is coupled to serve as a reference device for calibration measurements and subsequent breath analysis. The new sensor system provided a 3σ detection limit of 6.4 ppbV and an NNEA of 1.1E-9 Wcm-1Hz-0.5. In terms of the performed breath analysis measurements, 12 out of 13 fell within the error margin of the photoacoustic measurement system, demonstrating the reliability of the measurements in the field. KW - photoacoustic spectroscopy KW - real-time mass-spectrometry KW - breath analysis KW - acetone KW - UV-LED Y1 - 2024 U6 - https://doi.org/10.2139/ssrn.4724198 N1 - Der Aufsatz wurde peer-reviewed unter folgender DOI veröffentlicht: https://doi.org/10.1016/j.pacs.2024.100604 PB - Elsevier ER -