TY - CHAP A1 - De Souza Jr., Luis Antonio A1 - Afonso, Luis Claudio Sugi A1 - Palm, Christoph A1 - Papa, João Paulo T1 - Barrett's Esophagus Identification Using Optimum-Path Forest T2 - Proceedings of the 30th Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T 2017), Niterói, Rio de Janeiro, Brazil, 2017, 17-20 October N2 - Computer-assisted analysis of endoscopic images can be helpful to the automatic diagnosis and classification of neoplastic lesions. Barrett's esophagus (BE) is a common type of reflux that is not straight forward to be detected by endoscopic surveillance, thus being way susceptible to erroneous diagnosis, which can cause cancer when not treated properly. In this work, we introduce the Optimum-Path Forest (OPF) classifier to the task of automatic identification of Barrett'sesophagus, with promising results and outperforming the well known Support Vector Machines (SVM) in the aforementioned context. We consider describing endoscopic images by means of feature extractors based on key point information, such as the Speeded up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT), for further designing a bag-of-visual-wordsthat is used to feed both OPF and SVM classifiers. The best results were obtained by means of the OPF classifier for both feature extractors, with values lying on 0.732 (SURF) - 0.735(SIFT) for sensitivity, 0.782 (SURF) - 0.806 (SIFT) for specificity, and 0.738 (SURF) - 0.732 (SIFT) for the accuracy. KW - Speiseröhrenkrankheit KW - Diagnose KW - Maschinelles Lernen KW - Bilderkennung KW - Automatische Klassifikation Y1 - 2017 U6 - https://doi.org/10.1109/SIBGRAPI.2017.47 SP - 308 EP - 314 ER - TY - CHAP A1 - De Souza Jr., Luis Antonio A1 - Hook, Christian A1 - Papa, João Paulo A1 - Palm, Christoph T1 - Barrett's Esophagus Analysis Using SURF Features T2 - Bildverarbeitung für die Medizin 2017; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. März 2017 in Heidelberg N2 - The development of adenocarcinoma in Barrett’s esophagus is difficult to detect by endoscopic surveillance of patients with signs of dysplasia. Computer assisted diagnosis of endoscopic images (CAD) could therefore be most helpful in the demarcation and classification of neoplastic lesions. In this study we tested the feasibility of a CAD method based on Speeded up Robust Feature Detection (SURF). A given database containing 100 images from 39 patients served as benchmark for feature based classification models. Half of the images had previously been diagnosed by five clinical experts as being ”cancerous”, the other half as ”non-cancerous”. Cancerous image regions had been visibly delineated (masked) by the clinicians. SURF features acquired from full images as well as from masked areas were utilized for the supervised training and testing of an SVM classifier. The predictive accuracy of the developed CAD system is illustrated by sensitivity and specificity values. The results based on full image matching where 0.78 (sensitivity) and 0.82 (specificity) were achieved, while the masked region approach generated results of 0.90 and 0.95, respectively. KW - Speiseröhrenkrankheit KW - Diagnose KW - Maschinelles Sehen KW - Automatische Klassifikation Y1 - 2017 U6 - https://doi.org/10.1007/978-3-662-54345-0_34 SP - 141 EP - 146 PB - Springer CY - Berlin ER - TY - JOUR A1 - De Souza Jr., Luis Antonio A1 - Palm, Christoph A1 - Mendel, Robert A1 - Hook, Christian A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Weber, Silke A. T. A1 - Papa, João Paulo T1 - A survey on Barrett's esophagus analysis using machine learning JF - Computers in Biology and Medicine N2 - This work presents a systematic review concerning recent studies and technologies of machine learning for Barrett's esophagus (BE) diagnosis and treatment. The use of artificial intelligence is a brand new and promising way to evaluate such disease. We compile some works published at some well-established databases, such as Science Direct, IEEEXplore, PubMed, Plos One, Multidisciplinary Digital Publishing Institute (MDPI), Association for Computing Machinery (ACM), Springer, and Hindawi Publishing Corporation. Each selected work has been analyzed to present its objective, methodology, and results. The BE progression to dysplasia or adenocarcinoma shows a complex pattern to be detected during endoscopic surveillance. Therefore, it is valuable to assist its diagnosis and automatic identification using computer analysis. The evaluation of the BE dysplasia can be performed through manual or automated segmentation through machine learning techniques. Finally, in this survey, we reviewed recent studies focused on the automatic detection of the neoplastic region for classification purposes using machine learning methods. KW - Speiseröhrenkrankheit KW - Diagnose KW - Mustererkennung KW - Maschinelles Lernen KW - Literaturbericht KW - Barrett's esophagus KW - Machine learning KW - Adenocarcinoma KW - Image processing KW - Pattern recognition KW - Computer-aided diagnosis Y1 - 2018 U6 - https://doi.org/10.1016/j.compbiomed.2018.03.014 VL - 96 SP - 203 EP - 213 PB - Elsevier ER - TY - JOUR A1 - Passos, Leandro A. A1 - De Souza Jr., Luis Antonio A1 - Mendel, Robert A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Papa, João Paulo T1 - Barrett's esophagus analysis using infinity Restricted Boltzmann Machines JF - Journal of Visual Communication and Image Representation N2 - The number of patients with Barret’s esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett’s esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task. KW - Speiseröhrenkrankheit KW - Diagnose KW - Boltzmann-Maschine KW - Barrett’s esophagus KW - Infinity Restricted Boltzmann Machines KW - Meta-heuristics KW - Deep learning KW - Metaheuristik KW - Maschinelles Lernen Y1 - 2019 U6 - https://doi.org/10.1016/j.jvcir.2019.01.043 VL - 59 SP - 475 EP - 485 PB - Elsevier ER - TY - CHAP A1 - De Souza Jr., Luis Antonio A1 - Passos, Leandro A. A1 - Mendel, Robert A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Papa, João Paulo T1 - Fine-tuning Generative Adversarial Networks using Metaheuristics BT - A Case Study on Barrett's Esophagus Identification T2 - Bildverarbeitung für die Medizin 2021. Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021 N2 - Barrett's esophagus denotes a disorder in the digestive system that affects the esophagus' mucosal cells, causing reflux, and showing potential convergence to esophageal adenocarcinoma if not treated in initial stages. Thus, fast and reliable computer-aided diagnosis becomes considerably welcome. Nevertheless, such approaches usually suffer from imbalanced datasets, which can be addressed through Generative Adversarial Networks (GANs). Such techniques generate realistic images based on observed samples, even though at the cost of a proper selection of its hyperparameters. Many works employed a class of nature-inspired algorithms called metaheuristics to tackle the problem considering distinct deep learning approaches. Therefore, this paper's main contribution is to introduce metaheuristic techniques to fine-tune GANs in the context of Barrett's esophagus identification, as well as to investigate the feasibility of generating high-quality synthetic images for early-cancer assisted identification. KW - Endoskopie KW - Computerunterstützte Medizin KW - Deep Learning Y1 - 2021 SN - 978-3-658-33197-9 U6 - https://doi.org/10.1007/978-3-658-33198-6_50 SP - 205 EP - 210 PB - Springer Vieweg CY - Wiesbaden ER - TY - GEN A1 - Mendel, Robert A1 - De Souza Jr., Luis Antonio A1 - Rauber, David A1 - Papa, João Paulo A1 - Palm, Christoph T1 - Abstract: Semi-supervised Segmentation Based on Error-correcting Supervision T2 - Bildverarbeitung für die Medizin 2021. Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021 N2 - Pixel-level classification is an essential part of computer vision. For learning from labeled data, many powerful deep learning models have been developed recently. In this work, we augment such supervised segmentation models by allowing them to learn from unlabeled data. Our semi-supervised approach, termed Error-Correcting Supervision, leverages a collaborative strategy. Apart from the supervised training on the labeled data, the segmentation network is judged by an additional network. KW - Deep Learning Y1 - 2021 SN - 978-3-658-33197-9 U6 - https://doi.org/10.1007/978-3-658-33198-6_43 SP - 178 PB - Springer Vieweg CY - Wiesbaden ER - TY - GEN A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - De Souza Jr., Luis Antonio A1 - Papa, João Paulo A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Artificial Intelligence in Early Barrett's Cancer: The Segmentation Task T2 - Endoscopy N2 - Aims: The delineation of outer margins of early Barrett's cancer can be challenging even for experienced endoscopists. Artificial intelligence (AI) could assist endoscopists faced with this task. As of date, there is very limited experience in this domain. In this study, we demonstrate the measure of overlap (Dice coefficient = D) between highly experienced Barrett endoscopists and an AI system in the delineation of cancer margins (segmentation task). Methods: An AI system with a deep convolutional neural network (CNN) was trained and tested on high-definition endoscopic images of early Barrett's cancer (n = 33) and normal Barrett's mucosa (n = 41). The reference standard for the segmentation task were the manual delineations of tumor margins by three highly experienced Barrett endoscopists. Training of the AI system included patch generation, patch augmentation and adjustment of the CNN weights. Then, the segmentation results from patch classification and thresholding of the class probabilities. Segmentation results were evaluated using the Dice coefficient (D). Results: The Dice coefficient (D) which can range between 0 (no overlap) and 1 (complete overlap) was computed only for images correctly classified by the AI-system as cancerous. At a threshold of t = 0.5, a mean value of D = 0.72 was computed. Conclusions: AI with CNN performed reasonably well in the segmentation of the tumor region in Barrett's cancer, at least when compared with expert Barrett's endoscopists. AI holds a lot of promise as a tool for better visualization of tumor margins but may need further improvement and enhancement especially in real-time settings. KW - Speiseröhrenkrankheit KW - Maschinelles Lernen KW - Barrett's esphagus KW - Deep Learning KW - Segmentation Y1 - 2019 U6 - https://doi.org/10.1055/s-0039-1681187 VL - 51 IS - 04 SP - 6 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - CHAP A1 - De Souza Jr., Luis Antonio A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Papa, João Paulo A1 - Mendel, Robert A1 - Palm, Christoph T1 - Barrett's Esophagus Identification Using Color Co-occurrence Matrices T2 - 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Parana, 2018 N2 - In this work, we propose the use of single channel Color Co-occurrence Matrices for texture description of Barrett’sEsophagus (BE)and adenocarcinoma images. Further classification using supervised learning techniques, such as Optimum-Path Forest (OPF), Support Vector Machines with Radial Basisunction (SVM-RBF) and Bayesian classifier supports the contextof automatic BE and adenocarcinoma diagnosis. We validated three approaches of classification based on patches, patients and images in two datasets (MICCAI 2015 and Augsburg) using the color-and-texture descriptors and the machine learning techniques. Concerning MICCAI 2015 dataset, the best results were obtained using the blue channel for the descriptors and the supervised OPF for classification purposes in the patch-based approach, with sensitivity nearly to 73% for positive adenocarcinoma identification and specificity close to 77% for BE (non-cancerous) patch classification. Regarding the Augsburg dataset, the most accurate results were also obtained using both OPF classifier and blue channel descriptor for the feature extraction, with sensitivity close to 67% and specificity around to76%. Our work highlights new advances in the related research area and provides a promising technique that combines color and texture information, allied to three different approaches of dataset pre-processing aiming to configure robust scenarios for the classification step. KW - Barrett’s Esophagus KW - Co-occurrence Matrices KW - Machine learning KW - Texture Analysis Y1 - 2018 U6 - https://doi.org/10.1109/SIBGRAPI.2018.00028 SP - 166 EP - 173 ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Palm, Christoph A1 - Probst, Andreas A1 - Mendel, Robert A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - De Souza Jr., Luis Antonio A1 - Papa, João Paulo A1 - Siersema, Peter A1 - Messmann, Helmut T1 - A technical review of artificial intelligence as applied to gastrointestinal endoscopy: clarifying the terminology JF - Endoscopy International Open N2 - The growing number of publications on the application of artificial intelligence (AI) in medicine underlines the enormous importance and potential of this emerging field of research. In gastrointestinal endoscopy, AI has been applied to all segments of the gastrointestinal tract most importantly in the detection and characterization of colorectal polyps. However, AI research has been published also in the stomach and esophagus for both neoplastic and non-neoplastic disorders. The various technical as well as medical aspects of AI, however, remain confusing especially for non-expert physicians. This physician-engineer co-authored review explains the basic technical aspects of AI and provides a comprehensive overview of recent publications on AI in gastrointestinal endoscopy. Finally, a basic insight is offered into understanding publications on AI in gastrointestinal endoscopy. KW - Diagnose KW - Maschinelles Lernen KW - Gastroenterologie KW - Künstliche Intelligenz KW - Barrett's esophagus KW - Deep learning Y1 - 2019 U6 - https://doi.org/10.1055/a-1010-5705 VL - 07 IS - 12 SP - 1616 EP - 1623 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - De Souza Jr., Luis Antonio A1 - Papa, João Paulo A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus JF - Gut N2 - Based on previous work by our group with manual annotation of visible Barrett oesophagus (BE) cancer images, a real-time deep learning artificial intelligence (AI) system was developed. While an expert endoscopist conducts the endoscopic assessment of BE, our AI system captures random images from the real-time camera livestream and provides a global prediction (classification), as well as a dense prediction (segmentation) differentiating accurately between normal BE and early oesophageal adenocarcinoma (EAC). The AI system showed an accuracy of 89.9% on 14 cases with neoplastic BE. KW - Speiseröhrenkrankheit KW - Diagnose KW - Maschinelles Lernen KW - Barrett's esophagus KW - Deep learning KW - real-time Y1 - 2020 U6 - https://doi.org/10.1136/gutjnl-2019-319460 VL - 69 IS - 4 SP - 615 EP - 616 PB - BMJ CY - London ER -