TY - JOUR A1 - Kriegl, Raphael A1 - Kravanja, Gaia A1 - Hribar, Luka A1 - Čoga, Lucija A1 - Drevenšek-Olenik, Irena A1 - Jezeršek, Matija A1 - Kalin, Mitjan A1 - Shamonin (Chamonine), Mikhail T1 - Microstructured Magnetoactive Elastomers for Switchable Wettability JF - Polymers N2 - We demonstrate the control of wettability of non-structured and microstructured magnetoactive elastomers (MAEs) by magnetic field. The synthesized composite materials have a concentration of carbonyl iron particles of 75 wt.% (≈27 vol.%) and three different stiffnesses of the elastomer matrix. A new method of fabrication of MAE coatings on plastic substrates is presented, which allows one to enhance the response of the apparent contact angle to the magnetic field by exposing the particle-enriched side of MAEs to water. A magnetic field is not applied during crosslinking. The highest variation of the contact angle from (113 ± 1)° in zero field up to (156 ± 2)° at about 400 mT is achieved in the MAE sample with the softest matrix. Several lamellar and pillared MAE structures are fabricated by laser micromachining. The lateral dimension of surface structures is about 50 µm and the depth varies between 3 µm and 60 µm. A systematic investigation of the effects of parameters of laser processing (laser power and the number of passages of the laser beam) on the wetting behavior of these structures in the absence and presence of a magnetic field is performed. In particular, strong anisotropy of the wetting behavior of lamellar structures is observed. The results are qualitatively discussed in the framework of the Wenzel and Cassie-Baxter models. Finally, directions of further research on magnetically controlled wettability of microstructured MAE surfaces are outlined. The obtained results may be useful for the development of magnetically controlled smart surfaces for droplet-based microfluidics. Y1 - 2022 U6 - https://doi.org/10.3390/polym14183883 N1 - Corresponding authors: Raphael Kriegl und Mikhail Shamonin VL - 14 IS - 18 SP - 1 EP - 21 PB - MDPI ER - TY - JOUR A1 - Lovšin, Matija A1 - Brandl, Dominik A1 - Glavan, Gašper A1 - Belyaeva, Inna A. A1 - Cmok, Luka A1 - Coga, Lucija A1 - Kalin, Mitjan A1 - Shamonin (Chamonine), Mikhail A1 - Drevenšek-Olenik, Irena T1 - Reconfigurable Surface Micropatterns Based on the Magnetic Field-Induced Shape Memory Effect in Magnetoactive Elastomers JF - Polymers N2 - A surface relief grating with a period of 30 mu m is embossed onto the surface of magnetoactive elastomer (MAE) samples in the presence of a moderate magnetic field of about 180 mT. The grating, which is represented as a set of parallel stripes with two different amplitude reflectivity coefficients, is detected via diffraction of a laser beam in the reflection configuration. Due to the magnetic-field-induced plasticity effect, the grating persists on the MAE surface for at least 90 h if the magnetic field remains present. When the magnetic field is removed, the diffraction efficiency vanishes in a few minutes. The described effect is much more pronounced in MAE samples with larger content of iron filler (80 wt%) than in the samples with lower content of iron filler (70 wt%). A simple theoretical model is proposed to describe the observed dependence of the diffraction efficiency on the applied magnetic field. Possible applications of MAEs as magnetically reconfigurable diffractive optical elements are discussed. It is proposed that the described experimental method can be used as a convenient tool for investigations of the dynamics of magnetically induced plasticity of MAEs on the micrometer scale. KW - ADHESION KW - friction KW - magnetoactive elastomers KW - magnetorheological elastomer KW - optical diffraction KW - shape memory effect KW - surface microstructuring KW - TEMPERATURE Y1 - 2021 U6 - https://doi.org/10.3390/polym13244422 VL - 13 IS - 24 PB - MDPI ER -